These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 35328773)
1. Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects. Rodríguez-Merchán EC Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328773 [TBL] [Abstract][Full Text] [Related]
2. Cross Talk Between Cells and the Current Bioceramics in Bone Regeneration: A Comprehensive Review. Khayatan D; Bagherzadeh Oskouei A; Alam M; Mohammadikhah M; Badkoobeh A; Golkar M; Abbasi K; Karami S; Sayyad Soufdoost R; Kamali Hakim L; Hussain A; Tebyaniyan H; Heboyan A Cell Transplant; 2024; 33():9636897241236030. PubMed ID: 38494898 [TBL] [Abstract][Full Text] [Related]
3. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475 [TBL] [Abstract][Full Text] [Related]
4. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996 [TBL] [Abstract][Full Text] [Related]
5. New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold. Dinarvand P; Seyedjafari E; Shafiee A; Jandaghi AB; Doostmohammadi A; Fathi MH; Farhadian S; Soleimani M ACS Appl Mater Interfaces; 2011 Nov; 3(11):4518-24. PubMed ID: 21999213 [TBL] [Abstract][Full Text] [Related]
6. Effects of a bone graft substitute consisting of porous gradient HA/ZrO Shao RX; Quan RF; Wang T; Du WB; Jia GY; Wang D; Lv LB; Xu CY; Wei XC; Wang JF; Yang DS J Tissue Eng Regen Med; 2018 Mar; 12(3):e1813-e1825. PubMed ID: 29055138 [TBL] [Abstract][Full Text] [Related]
7. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. Alksne M; Kalvaityte M; Simoliunas E; Rinkunaite I; Gendviliene I; Locs J; Rutkunas V; Bukelskiene V J Mech Behav Biomed Mater; 2020 Apr; 104():103641. PubMed ID: 32174399 [TBL] [Abstract][Full Text] [Related]
8. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147 [TBL] [Abstract][Full Text] [Related]
9. Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler? Lyons FG; Gleeson JP; Partap S; Coghlan K; O'Brien FJ Clin Orthop Relat Res; 2014 Apr; 472(4):1318-28. PubMed ID: 24385037 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
11. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
12. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P Biomatter; 2014; 4():e27664. PubMed ID: 24441389 [TBL] [Abstract][Full Text] [Related]
14. A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing. Hasan R; Schaner K; Mulinti P; Brooks A Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299362 [TBL] [Abstract][Full Text] [Related]
15. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration. Yin HM; Li X; Wang P; Ren Y; Liu W; Xu JZ; Li JH; Li ZM J Biomed Mater Res A; 2019 Mar; 107(3):654-662. PubMed ID: 30474348 [TBL] [Abstract][Full Text] [Related]
16. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat. Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475 [TBL] [Abstract][Full Text] [Related]
18. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Ho-Shui-Ling A; Bolander J; Rustom LE; Johnson AW; Luyten FP; Picart C Biomaterials; 2018 Oct; 180():143-162. PubMed ID: 30036727 [TBL] [Abstract][Full Text] [Related]
19. Biomaterials for periodontal regeneration: a review of ceramics and polymers. Shue L; Yufeng Z; Mony U Biomatter; 2012; 2(4):271-7. PubMed ID: 23507891 [TBL] [Abstract][Full Text] [Related]
20. Alginate composites for bone tissue engineering: a review. Venkatesan J; Bhatnagar I; Manivasagan P; Kang KH; Kim SK Int J Biol Macromol; 2015 Jan; 72():269-81. PubMed ID: 25020082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]