These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35328811)

  • 21. Highly Stretchable Bacterial Cellulose Produced by
    Cielecka I; Ryngajłło M; Maniukiewicz W; Bielecki S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016.
    Güzel M; Akpınar Ö
    Int J Biol Macromol; 2020 Nov; 162():1597-1604. PubMed ID: 32777420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25.
    Ryngajłło M; Jacek P; Cielecka I; Kalinowska H; Bielecki S
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6673-6688. PubMed ID: 31168651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by
    Li Z; Chen SQ; Cao X; Li L; Zhu J; Yu H
    J Microbiol Biotechnol; 2021 Mar; 31(3):429-438. PubMed ID: 33323677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Set-Up of Bacterial Cellulose Production From the Genus
    Vigentini I; Fabrizio V; Dellacà F; Rossi S; Azario I; Mondin C; Benaglia M; Foschino R
    Front Microbiol; 2019; 10():1953. PubMed ID: 31551945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Description of
    Marič L; Cleenwerck I; Accetto T; Vandamme P; Trček J
    Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32756518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial cellulose production from Komagataeibacter xylinus TISTR 1011 and Komagataeibacter nataicola TISTR 975 using yam bean juice as a nutrient source.
    Chaiyachet OA; Wongtham K; Sangkasame K
    J Gen Appl Microbiol; 2023 Jan; 68(5):225-231. PubMed ID: 35691844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae.
    Teh MY; Ooi KH; Danny Teo SX; Bin Mansoor ME; Shaun Lim WZ; Tan MH
    ACS Synth Biol; 2019 Apr; 8(4):708-723. PubMed ID: 30865830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii.
    Hu H; Catchmark JM; Demirci A
    Bioprocess Biosyst Eng; 2022 Mar; 45(3):573-587. PubMed ID: 35184225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography.
    Brugnoli M; Robotti F; La China S; Anguluri K; Haghighi H; Bottan S; Ferrari A; Gullo M
    Sci Rep; 2021 Sep; 11(1):19311. PubMed ID: 34588564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.
    Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP
    Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans.
    Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI
    Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin.
    Chen SQ; Cao X; Li Z; Zhu J; Li L
    Carbohydr Polym; 2020 Oct; 246():116632. PubMed ID: 32747267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture.
    Gomes RJ; Ida EI; Spinosa WA
    Braz J Microbiol; 2023 Jun; 54(2):703-713. PubMed ID: 36800074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review.
    Moradi M; Jacek P; Farhangfar A; Guimarães JT; Forough M
    Int J Biol Macromol; 2021 Jul; 183():635-650. PubMed ID: 33957199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.