BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 35329442)

  • 1. Surface Modification of Ammonium Polyphosphate for Enhancing Flame-Retardant Properties of Thermoplastic Polyurethane.
    Wang Z; Jiang Y; Yang X; Zhao J; Fu W; Wang N; Wang DY
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate.
    Chen X; Jiang Y; Jiao C
    J Hazard Mater; 2014 Feb; 266():114-21. PubMed ID: 24389005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The novel application of chitosan: Effects of cross-linked chitosan on the fire performance of thermoplastic polyurethane.
    Zhang S; Liu X; Jin X; Li H; Sun J; Gu X
    Carbohydr Polym; 2018 Jun; 189():313-321. PubMed ID: 29580415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane.
    Liu X; Gu X; Sun J; Zhang S
    Carbohydr Polym; 2017 Jul; 167():356-363. PubMed ID: 28433172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties.
    Luo Y; Xie Y; Geng W; Dai G; Sheng X; Xie D; Wu H; Mei Y
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):223-235. PubMed ID: 34390990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of a Novel Phosphoramide Flame Retardant on the Fire Behavior and Transparency of Thermoplastic Polyurethane Elastomers.
    Li M; Chen Y; Kong Z; Sun Z; Qian L
    ACS Omega; 2023 May; 8(20):18151-18164. PubMed ID: 37251156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-based arginine surface-modified ammonium polyphosphate: an efficient intumescent flame retardant for epoxy resin.
    Cheng C; Wang Y; Lu Y; Li S; Li H; Yan J; Du S
    RSC Adv; 2022 Mar; 12(15):9223-9237. PubMed ID: 35424861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 3D Hollow Layered Double Hydroxide-Molybdenum Disulfide Hybrid Materials and Their Application in Flame Retardant Thermoplastic Polyurethane.
    Qian Y; Su W; Li L; Fu H; Li J; Zhang Y
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.
    Chen H; Wang J; Ni A; Ding A; Han X; Sun Z
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic Effect of α-ZrP Nanosheets and Nitrogen-Based Flame Retardants on Thermoplastic Polyurethane.
    Han S; Yang F; Li Q; Sui G; Kalimuldina G; Araby S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17054-17069. PubMed ID: 36944022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Hyacinth Fiber as a Bio-Based Carbon Source for Intumescent Flame-Retardant Poly (Butylene Succinate) Composites.
    Suwanniroj A; Suppakarn N
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss.
    Qu Q; Xu J; Wang H; Yu Y; Dong Q; Zhang X; He Y
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation of Additives to Maximise Performance of Expandable Graphite-Based Intumescent-Flame-Retardant Polyurethane Composites.
    Kabir II; Carlos Baena J; Wang W; Wang C; Oliver S; Nazir MT; Khalid A; Fu Y; Yuen ACY; Yeoh GH
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Functionalized Carbon Microspheres Combined with Ammonium Polyphosphate on Fire Safety Performance of Thermoplastic Polyurethane.
    Chen X; Lai Y; Gu Y; Jiao C; Li S
    ACS Omega; 2020 Mar; 5(11):6051-6061. PubMed ID: 32226887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Enhanced Mechanical Properties and Intrinsic Flame-Retardant Polyurethane Elastomer Containing 4-(Phenylethynyl) Di(Ethylene Glycol) Phthalate.
    Xie M; Jia D; Hu J; He J; Li X; Yang R
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34371995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Use of Melamine Phytate as a Flame-Retardant Additive in Chicken Feather-Containing Thermoplastic Polyurethane Biocomposites.
    Mutlu A; Erdem A; Dogan M
    ACS Omega; 2023 Jul; 8(28):25081-25089. PubMed ID: 37483238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Reduced-Graphene-Oxide-Modified Ammonium Polyphosphate to Enhance the Flame Retardancy, Smoke Release Suppression, and Mechanical Properties of Epoxy Resin.
    Wang F; Liao J; Long M; Yan L; Cai M
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Effect of ZIF-67-Derived Hollow NiCo-LDH and MoS
    Qian Y; Su W; Li L; Zhao R; Fu H; Li J; Zhang P; Guo Q; Ma J
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EG/TPU composites with enhanced flame retardancy and mechanical properties prepared by microlayer coextrusion technology.
    Zhang C; Shi M; Zhang Y; Yang W; Jiao Z; Yang L
    RSC Adv; 2019 Jul; 9(41):23944-23956. PubMed ID: 35530590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a Novel Phosphorous-Nitrogen Based Charring Agent and Its Application in Flame-retardant HDPE/IFR Composites.
    Chen J; Wang J; Ni A; Chen H; Shen P
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31248169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.