These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35329448)

  • 1. Modeling of Polycrystalline Material Microstructure with 3D Grain Boundary Based on Laguerre-Voronoi Tessellation.
    Zheng X; Sun T; Zhou J; Zhang R; Ming P
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of Grains in Polycrystalline Materials From Incomplete Data Using Laguerre Tessellations.
    Petrich L; Staněk J; Wang M; Westhoff D; Heller L; Šittner P; Krill CE; Beneš V; Schmidt V
    Microsc Microanal; 2019 Jun; 25(3):743-752. PubMed ID: 31038096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of tessellation morphology on ultrasonic scattering.
    Islam S; Norouzian M; Turner JA
    J Acoust Soc Am; 2022 Sep; 152(3):1951. PubMed ID: 36182287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microstructural grain-size distribution on ultrasonic scattering.
    Norouzian M; Islam S; Turner JA
    Ultrasonics; 2020 Mar; 102():106032. PubMed ID: 31670233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete topology of cells, grains, and bubbles in three-dimensional microstructures.
    Lazar EA; Mason JK; MacPherson RD; Srolovitz DJ
    Phys Rev Lett; 2012 Aug; 109(9):095505. PubMed ID: 23002849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereological reconstruction of polycrystalline materials.
    Liebscher A; Jeulin D; Lantuéjoul C
    J Microsc; 2015 Jun; 258(3):190-9. PubMed ID: 25786812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.
    Kabir MR; Richter H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of Philodendron melinonii and Arabidopsis thaliana tissue microstructure and geometric modeling via finite-edge centroidal Voronoi tessellation.
    Faisal TR; Hristozov N; Rey AD; Western TL; Pasini D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031921. PubMed ID: 23030958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the sampling of three-dimensional polycrystalline microstructures for distribution determination.
    Luan J; Liu G; Wang H; Ullah A
    J Microsc; 2011 Nov; 244(2):214-22. PubMed ID: 21810095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical physics of grain-boundary engineering.
    McGarrity ES; Duxbury PM; Holm EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026102. PubMed ID: 15783373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voronoi tessellation to study the numerical density and the spatial distribution of neurones.
    Duyckaerts C; Godefroy G
    J Chem Neuroanat; 2000 Oct; 20(1):83-92. PubMed ID: 11074346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Study of Variation of Mechanical Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes.
    Sharifi H; Larouche D
    Materials (Basel); 2014 Apr; 7(4):3065-3083. PubMed ID: 28788607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D superalloy grain segmentation using a multichannel edge-weighted centroidal Voronoi tessellation algorithm.
    Cao Y; Ju L; Zhou Y; Wang S
    IEEE Trans Image Process; 2013 Oct; 22(10):4123-35. PubMed ID: 23797261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel.
    Liu T; Xia S; Zhou B; Bai Q; Rohrer GS
    Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Cell Geometry on the Mechanical Properties of 3D Voronoi Tessellation.
    Alknery Z; Sktani ZDI; Arab A
    J Funct Biomater; 2022 Dec; 13(4):. PubMed ID: 36547562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of a polycrystalline thin-film model to explore the relation between probe size and structural correlation length in fluctuation electron microscopy.
    Treacy MM; Gibson JM
    Microsc Microanal; 2012 Feb; 18(1):241-53. PubMed ID: 22258727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LAGUERRE-INTERSECTION METHOD FOR IMPLICIT SOLVATION.
    Hummel MH; Yu B; Simmerling C; Coutsias EA
    Int J Comput Geom Appl; 2018 Mar; 28(1):1-38. PubMed ID: 30853740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.