These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35329460)

  • 1. Integrating a Top-Gas Recycling and CO
    Hu Y; Qiu Y; Chen J; Hao L; Rufford TE; Rudolph V; Wang G
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Hydrogen-Rich Gas in Blast Furnace Ironmaking of V-bearing Titanomagnetite: Mass and Energy Balance Calculations.
    Gao X; Zhang R; You Z; Yu W; Dang J; Bai C
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the Rist diagram for predicting operating conditions in blast furnaces with multiple injections.
    Bailera M; Nakagaki T; Kataoka R
    Open Res Eur; 2021; 1():141. PubMed ID: 37645097
    [No Abstract]   [Full Text] [Related]  

  • 4. Blending industrial blast furnace gas with H
    Novak K; Neuendorf CS; Kofler I; Kieberger N; Klamt S; Pflügl S
    Bioresour Technol; 2021 Mar; 323():124573. PubMed ID: 33360948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Municipal solid waste gasification by hot recycling blast furnace gas coupled with in-situ decarburization to prepare blast furnace injection of hydrogen-rich gas.
    Qin L; Fang J; Zhu S; Zhao B; Han J
    Waste Manag; 2024 Feb; 174():153-163. PubMed ID: 38056364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-process production occurs in the iron and steel industry, supporting 'dual carbon' target: An in-depth study of CO
    Na H; Yuan Y; Du T; Zhang T; Zhao X; Sun J; Qiu Z; Zhang L
    J Environ Sci (China); 2024 Jun; 140():46-58. PubMed ID: 38331514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of CO
    Angeli SD; Gossler S; Lichtenberg S; Kass G; Agrawal AK; Valerius M; Kinzel KP; Deutschmann O
    Angew Chem Int Ed Engl; 2021 May; 60(21):11852-11857. PubMed ID: 33661578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Reduction of Selected Iron-Bearing Waste Materials.
    Mróz J; Konstanciak A; Warzecha M; Więcek M; Hutny AM
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Gu Y; Pan C; Sui Y; Wang B; Jiang Z; Wang C; Liu Y
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):124010-124027. PubMed ID: 37996578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomethanation of blast furnace gas using anaerobic granular sludge
    Wang Y; Yin C; Liu Y; Tan M; Shimizu K; Lei Z; Zhang Z; Sumi I; Yao Y; Mogi Y
    RSC Adv; 2018 Jul; 8(46):26399-26406. PubMed ID: 35541962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of CO2 emission between COREX and blast furnace iron-making system.
    Hu C; Han X; Li Z; Zhang C
    J Environ Sci (China); 2009; 21 Suppl 1():S116-20. PubMed ID: 25084406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technological roadmap towards optimal decarbonization development of China's iron and steel industry.
    Liu X; Peng R; Bai C; Chi Y; Li H; Guo P
    Sci Total Environ; 2022 Dec; 850():157701. PubMed ID: 35964747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Gate Mixture-of-Experts Stacked Autoencoders for Quality Prediction in Blast Furnace Ironmaking.
    Zhu H; He B; Zhang X
    ACS Omega; 2022 Nov; 7(45):41296-41303. PubMed ID: 36406512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Measurement Method for Blast Furnace Molten Iron Based on Infrared Thermography and Temperature Reduction Model.
    Pan D; Jiang Z; Chen Z; Gui W; Xie Y; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis Behavior of Pyrite under a CO-H
    Zheng Z; You Y; Guo J; Li G; You Z; Lv X
    ACS Omega; 2022 Aug; 7(33):29116-29124. PubMed ID: 36033700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallurgical Coke Production with Biomass Additives: Study of Biocoke Properties for Blast Furnace and Submerged Arc Furnace Purposes.
    Bazaluk O; Kieush L; Koveria A; Schenk J; Pfeiffer A; Zheng H; Lozynskyi V
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the High-Temperature Interaction between Coke and Iron Ores with Different Layer Thicknesses.
    Wang YH; Du P; Diao J; Xie B; Zhu MH
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Sarić M; Dijkstra JW; van Delft YC
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury mass flow in iron and steel production process and its implications for mercury emission control.
    Wang F; Wang S; Zhang L; Yang H; Gao W; Wu Q; Hao J
    J Environ Sci (China); 2016 May; 43():293-301. PubMed ID: 27155436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive investigation of the reaction behaviorial features of coke with different CRIs in the simulated cohesive zone of a blast furnace.
    Lv QQ; Tian YS; Zhou JL; Ren HW; Wang GH
    PLoS One; 2021; 16(1):e0245124. PubMed ID: 33428653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.