These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35329494)

  • 41. Laser ignited engines: progress, challenges and prospects.
    Dearden G; Shenton T
    Opt Express; 2013 Nov; 21 Suppl 6():A1113-25. PubMed ID: 24514930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.
    Bae T; Atkins RA; Taylor HF; Gibler WN
    Appl Opt; 2003 Feb; 42(6):1003-7. PubMed ID: 12617216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental comparisons of hypothesis test and moving average based combustion phase controllers.
    Gao J; Wu Y; Shen T
    ISA Trans; 2016 Nov; 65():504-515. PubMed ID: 27726861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Focused microwave-induced combustion: a new technique for sample digestion.
    Mesko MF; Pereira JS; Moraes DP; Barin JS; Mello PA; Paniz JN; Nóbrega JA; Korn MG; Flores EM
    Anal Chem; 2010 Mar; 82(5):2155-60. PubMed ID: 20143837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release.
    Knapp M; Luczak A; Schlüter H; Beushausen V; Hentschel W; Andresen P
    Appl Opt; 1996 Jul; 35(21):4009-17. PubMed ID: 21102804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines.
    Cundy M; Schucht T; Thiele O; Sick V
    Appl Opt; 2009 Feb; 48(4):B94-B104. PubMed ID: 19183588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers.
    Hsieh KL; Hwang SK; Yang CL
    Opt Lett; 2017 Sep; 42(17):3307-3310. PubMed ID: 28957090
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron density measurements in shock tube using microwave interferometry.
    Toujani N; Alquaity ABS; Farooq A
    Rev Sci Instrum; 2019 May; 90(5):054706. PubMed ID: 31153231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of methane ratio on MPDF (micro-pilot dual-fuel) combustion characteristic in a heavy-duty single cylinder engine.
    Choi M; Mohiuddin K; Park S
    Sci Rep; 2021 May; 11(1):9740. PubMed ID: 33963243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.
    Dey I; Toyoda Y; Yamamoto N; Nakashima H
    Rev Sci Instrum; 2015 Dec; 86(12):123505. PubMed ID: 26724025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma.
    Nishiyama A; Moon A; Ikeda Y; Hayashi J; Akamatsu F
    Opt Express; 2013 Nov; 21 Suppl 6():A1094-101. PubMed ID: 24514928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental investigation and exergy analysis on homogeneous charge compression ignition engine fueled with natural gas and diethyl ether.
    Natesan V; Periyasamy S; Muniappan K; Rajamohan S
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6677-6695. PubMed ID: 30632044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines.
    Buruiana DL; Sachelarie A; Butnaru C; Ghisman V
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser.
    Zhang B; Zhu D; Zhou P; Xie C; Pan S
    Appl Opt; 2019 Jul; 58(20):5479-5485. PubMed ID: 31504017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting the combustion behaviour of compression ignition engine fuelled with biodiesel from Stoechospermum marginatum, a macro algae.
    Venkatesan H; Rose GJJ; Vijayarengan P; Sivamani S; Krishnan J; Thomai MP
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63464-63479. PubMed ID: 32651794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.
    Premnath S; Devaradjane G
    Ecotoxicol Environ Saf; 2015 Nov; 121():10-5. PubMed ID: 26256249
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine.
    Guangxin G; Zhulin Y; Apeng Z; Shenghua L; Yanju W
    J Energy Resour Technol; 2013 Dec; 135(4):422021-422025. PubMed ID: 23918238
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stable microwave coaxial cavity plasma system at atmospheric pressure.
    Song H; Hong JM; Lee KH; Choi JJ
    Rev Sci Instrum; 2008 May; 79(5):054702. PubMed ID: 18513083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.
    Fan L; Xia G; Chen J; Tang X; Liang Q; Wu Z
    Opt Express; 2016 Aug; 24(16):18252-65. PubMed ID: 27505789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dataset for comparison between single and double pilot injection in diesel-natural gas dual fuel engine.
    De Simio L; Iannaccone S
    Data Brief; 2020 Feb; 28():104963. PubMed ID: 31890804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.