These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35329559)

  • 21. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.
    Cho H; Park J; Park JY
    J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics.
    Qichang Z; Yang Y; Wei W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Analysis of a Magnetically Coupled Multi-Frequency Hybrid Energy Harvester.
    Xu Z; Yang H; Zhang H; Ci H; Zhou M; Wang W; Meng A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Pendulum-like Low Frequency Electromagnetic Vibration Energy Harvester Based on Polymer Spring and Coils.
    Li Y; Wang X; Zhang S; Zhou C; Qiao D; Tao K
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromagnetic Vibration Energy Harvester with Tunable Resonance Frequency Based on Stress Modulation of Flexible Springs.
    Li Y; Zhou C; Cao Q; Wang X; Qiao D; Tao K
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester.
    Bouhedma S; Zheng Y; Lange F; Hohlfeld D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching.
    Xu J; Liu Z; Dai W; Zhang R; Ge J
    Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Electromagnetic Vibration Energy Harvester with a Tunable Mass Moment of Inertia.
    Ibrahim P; Arafa M; Anis Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations.
    Min Z; Hou C; Sui G; Shan X; Xie T
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications.
    Bouhedma S; Hu S; Schütz A; Lange F; Bechtold T; Ouali M; Hohlfeld D
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester.
    Xu Q; Gao A; Li Y; Jin Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of a piezoelectric power harvester with adjustable frequency by precise electric field method.
    Wang Y; Lian Z; Yao M; Wang J; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2154-61. PubMed ID: 24081264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency Modulation Approach for High Power Density 100 Hz Piezoelectric Vibration Energy Harvester.
    Ju D; Wang L; Li C; Huang H; Liu H; Liu K; Wang Q; Han X; Zhao L; Maeda R
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.
    Tang Q; Yang Y; Li X
    Rev Sci Instrum; 2014 Apr; 85(4):045004. PubMed ID: 24784650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.