BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35329596)

  • 1. Plasmon Tuning of Liquid Gallium Nanoparticles through Surface Anodization.
    Chen CY; Chien CY; Wang CM; Lin RS; Chen IC
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlithographic Formation of Ta
    Kisslinger R; Riddell S; Manuel AP; Alam KM; Kalra AP; Cui K; Shankar K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4340-4351. PubMed ID: 33455157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.
    Lumdee C; Toroghi S; Kik PG
    ACS Nano; 2012 Jul; 6(7):6301-7. PubMed ID: 22731808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturas.
    Catalán-Gómez S; Redondo-Cubero A; Palomares FJ; Nucciarelli F; Pau JL
    Nanotechnology; 2017 Oct; 28(40):405705. PubMed ID: 28787277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Colloidal Gold Nanoparticles on Porous Anodic Aluminum Oxide Substrates for Refractometric Sensing.
    Malinovskis U; Popļausks R; Jurkevičiu Tė A; Dutovs A; Berzins K; Perkanuks V; Simka W; Muiznieks I; Erts D; Prikulis J
    ACS Omega; 2022 Nov; 7(44):40324-40332. PubMed ID: 36385891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.
    Loiseau A; Zhang L; Hu D; Salmain M; Mazouzi Y; Flack R; Liedberg B; Boujday S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46462-46471. PubMed ID: 31744295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrally broad plasmonic absorption in Ga and In nanoparticle hybrids.
    Gordillo N; Catalán-Gómez S; Pau JL; Redondo-Cubero A
    Nanotechnology; 2019 Nov; 30(47):475705. PubMed ID: 31426038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of Tunable Localized Surface Plasmon Resonance of Cu@Cu
    Yin H; Zhao Y; Xu X; Chen J; Wang X; Yu J; Wang J; Wu W
    ACS Omega; 2019 Sep; 4(11):14404-14410. PubMed ID: 31528793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of self-organized nanoporous anodic oxide from metallic gallium.
    Pandey B; Thapa PS; Higgins DA; Ito T
    Langmuir; 2012 Sep; 28(38):13705-11. PubMed ID: 22934571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance.
    Ye S; Song J; Tian Y; Chen L; Wang D; Niu H; Qu J
    Nanoscale; 2015 Aug; 7(29):12706-12. PubMed ID: 26153799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: Theoretical prediction and experimental validation.
    Song D; Jing D
    J Colloid Interface Sci; 2017 Nov; 505():373-382. PubMed ID: 28601746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy.
    Huang T; Nancy Xu XH
    J Mater Chem; 2010 Jan; 20(44):9867-9876. PubMed ID: 22707855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Au Nanoparticle Arrays on Flexible Substrate for Tunable Localized Surface Plasmon Resonance.
    Tang Z; Wu J; Yu X; Hong R; Zu X; Lin X; Luo H; Lin W; Yi G
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9281-9288. PubMed ID: 33587614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO
    Farsinezhad S; Banerjee SP; Bangalore Rajeeva B; Wiltshire BD; Sharma H; Sura A; Mohammadpour A; Kar P; Fedosejevs R; Shankar K
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):740-749. PubMed ID: 28001362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.
    Knight MW; Coenen T; Yang Y; Brenny BJ; Losurdo M; Brown AS; Everitt HO; Polman A
    ACS Nano; 2015 Feb; 9(2):2049-60. PubMed ID: 25629392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles.
    Haes AJ; Van Duyne RP
    J Am Chem Soc; 2002 Sep; 124(35):10596-604. PubMed ID: 12197762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Localized Surface Plasmon Resonance Wavelengths of Silver Nanoparticles by Mechanical Deformation.
    Ameer FS; Varahagiri S; Benza DW; Willett DR; Wen Y; Wang F; Chumanov G; Anker JN
    J Phys Chem C Nanomater Interfaces; 2016 Sep; 120(37):20886-20895. PubMed ID: 28239431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.
    Yang Z; Chen S; Fang P; Ren B; Girault HH; Tian Z
    Phys Chem Chem Phys; 2013 Apr; 15(15):5374-8. PubMed ID: 23376970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.