BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35329625)

  • 1. Mechanical Properties and Gamma Radiation Transmission Rate of Heavyweight Concrete Containing Barite Aggregates.
    Badarloo B; Lehner P; Bakhtiari Doost R
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Heavyweight Self-Compacting Concrete and Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates.
    Valizadeh A; Aslani F; Asif Z; Roso M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron attenuation characteristics of polyethylene, polyvinyl chloride, and heavy aggregate concrete and mortars.
    Abdul-Majid S; Othman F
    Health Phys; 1994 Mar; 66(3):327-38. PubMed ID: 8106253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Ambient-Cured Normal and Heavyweight Geopolymer Concrete Exposed to High Temperatures.
    Aslani F; Asif Z
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30836655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete.
    Aslani F; Hamidi F; Ma Q
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formwork Pressure of a Heavyweight Self-Compacting Concrete Mix.
    Glinicki MA; Gołaszewski J; Cygan G
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.
    Kim HH; Kim CS; Jeon JH; Park CG
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational AI Models for Investigating the Radiation Shielding Potential of High-Density Concrete.
    Amin MN; Ahmad I; Iqbal M; Abbas A; Khan K; Faraz MI; Alabdullah AA; Ullah S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkali-Silica Reactivity of High Density Aggregates for Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Glinicki MA; Gibas K; Baran T
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Thermal Properties of Aggregates on the Mechanical Properties of High Strength Concrete under Loading and High Temperature Conditions.
    Lee T; Jeong K; Choi H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental, analytical, and simulation studies of modified concrete mix for radiation shielding in a mixed radiation field.
    Nabil IM; El-Samrah MG; Omar A; Tawfic AF; El Sayed AF
    Sci Rep; 2023 Oct; 13(1):17637. PubMed ID: 37848620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Producing Heavyweight High-Performance Concrete by Using Black Sand as Newly Shielding Construction Material.
    Eltawil KA; Mahdy MG; Youssf O; Tahwia AM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on the Thermal Properties of High-Strength Concrete Containing CBA Fine Aggregates.
    Yang IH; Park J
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties and Durability of Rubberized and Glass Powder Modified Rubberized Concrete for Whitetopping Structures.
    Grinys A; Balamurugan M; Augonis A; Ivanauskas E
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33947072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.
    Erdem S; Blankson MA
    J Hazard Mater; 2014 Jan; 264():403-10. PubMed ID: 24316812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates.
    Park JH; Jeong ST; Bui QT; Yang IH
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete.
    Nili M; Sasanipour H; Aslani F
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Compressive Strength of Concrete Containing Untreated Coal Waste Aggregates Using Ultrasonic Pulse Velocity.
    Karimaei M; Dabbaghi F; Dehestani M; Rashidi M
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of Concrete Containing Recycled Glass Aggregates Produced of Exploded Lighting Materials.
    Drzymała T; Zegardło B; Tofilo P
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation on Mechanical and Thermal Properties of Concrete Using Waste Materials as an Aggregate Substitution.
    Sosoi G; Abid C; Barbuta M; Burlacu A; Balan MC; Branoaea M; Vizitiu RS; Rigollet F
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.