BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35329709)

  • 1. Cellulose Nanofibrils as a Damping Material for the Production of Highly Crystalline Nanosized Zeolite Y via Ball Milling.
    Nassrullah H; Anis SF; Lalia BS; Hashaikeh R
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.
    Anand C; Yamaguchi Y; Liu Z; Ibe S; Elangovan SP; Ishii T; Ishikawa T; Endo A; Okubo T; Wakihara T
    Sci Rep; 2016 Jul; 6():29210. PubMed ID: 27378145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased sugar yield from pre-milled Douglas-fir forest residuals with lower energy consumption by using planetary ball milling.
    Gu BJ; Wang J; Wolcott MP; Ganjyal GM
    Bioresour Technol; 2018 Mar; 251():93-98. PubMed ID: 29272773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Removal of Penicillin from Aqueous Solution Using Zinc Oxide/Natural-Zeolite Composite Nano-Powders Prepared Via Ball Milling Technique.
    Khosravian P; Ghashang M; Ghayoor H
    Recent Pat Nanotechnol; 2017 Jul; 11(2):154-164. PubMed ID: 28056750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose.
    Lu M; Li J; Han L; Xiao W
    Bioresour Technol; 2019 Feb; 273():1-7. PubMed ID: 30368157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced hydrolysis of mechanically pretreated cellulose in water/CO
    Wu K; Feng G; Liu Y; Liu C; Zhang X; Liu S; Liang B; Lu H
    Bioresour Technol; 2018 Aug; 261():28-35. PubMed ID: 29653331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Ball Milling on the Hydrogen Evolution Performance of Cu
    Kageshima Y; Kato S; Shiga S; Takagi F; Minamisawa H; Horita M; Yamakami T; Teshima K; Domen K; Nishikiori H
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13108-13120. PubMed ID: 36853194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper.
    Hu F; Zeng J; Cheng Z; Wang X; Wang B; Zeng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117474. PubMed ID: 33357928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pb(II) Adsorption of Composite Alginate Beads Containing Mesoporous Natural Zeolite.
    Munkhbat D; Ganbold T; Naranbaatar A; Shiomori K; Bayanjargal O
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5267-5275. PubMed ID: 32126729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of cellulose nanofibers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment.
    Nagarajan KJ; Balaji AN; Ramanujam NR
    Carbohydr Polym; 2019 May; 212():312-322. PubMed ID: 30832863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multitechnique approach to assess the effect of ball milling on cellulose.
    Avolio R; Bonadies I; Capitani D; Errico ME; Gentile G; Avella M
    Carbohydr Polym; 2012 Jan; 87(1):265-273. PubMed ID: 34662960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high energy ball milling on organic pollutant adsorption properties of chitosan.
    Qiu W; Vakili M; Cagnetta G; Huang J; Yu G
    Int J Biol Macromol; 2020 Apr; 148():543-549. PubMed ID: 31962070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of cellulose carbon aerogel via combined technology of wet ball-milling and TEMPO-mediated oxidation and its supersorption performance to ionic dyes.
    Huang P; Zhang P; Min L; Tang J; Sun H
    Bioresour Technol; 2020 Nov; 315():123815. PubMed ID: 32682265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Ball Milling Processes on the Microstructure and Rheological Properties of Microcrystalline Cellulose as a Sustainable Polymer Additive.
    Zheng Y; Fu Z; Li D; Wu M
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe
    Li Y; Zimmerman AR; He F; Chen J; Han L; Chen H; Hu X; Gao B
    Sci Total Environ; 2020 Jun; 722():137972. PubMed ID: 32208286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions.
    Zhuang Z; Wang L; Tang J
    J Hazard Mater; 2021 Mar; 406():124676. PubMed ID: 33310330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose.
    Mattonai M; Pawcenis D; Del Seppia S; Łojewska J; Ribechini E
    Bioresour Technol; 2018 Dec; 270():270-277. PubMed ID: 30223158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation.
    Van Craeyveld V; Holopainen U; Selinheimo E; Poutanen K; Delcour JA; Courtin CM
    J Agric Food Chem; 2009 Sep; 57(18):8467-73. PubMed ID: 19754173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures.
    Zhao L; Zhang Y; Wang L; Lyu H; Xia S; Tang J
    Chemosphere; 2022 May; 294():133820. PubMed ID: 35104542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.