These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35330195)

  • 1. Determination of the Respiratory Compensation Point by Detecting Changes in Intercostal Muscles Oxygenation by Using Near-Infrared Spectroscopy.
    Contreras-Briceño F; Espinosa-Ramirez M; Keim-Bagnara V; Carreño-Román M; Rodríguez-Villagra R; Villegas-Belmar F; Viscor G; Gabrielli L; Andía ME; Araneda OF; Hurtado DE
    Life (Basel); 2022 Mar; 12(3):. PubMed ID: 35330195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercostal Muscles Oxygenation and Breathing Pattern during Exercise in Competitive Marathon Runners.
    Contreras-Briceño F; Espinosa-Ramírez M; Moya-Gallardo E; Fuentes-Kloss R; Gabrielli L; Araneda OF; Viscor G
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the Respiratory Compensation Point With Muscle Oxygen Saturation in Locomotor and Non-locomotor Muscles Using Wearable NIRS Spectroscopy During Whole-Body Exercise.
    Yogev A; Arnold J; Clarke D; Guenette JA; Sporer BC; Koehle MS
    Front Physiol; 2022; 13():818733. PubMed ID: 35431982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-Differences in the Oxygenation Levels of Intercostal and Vastus Lateralis Muscles During Incremental Exercise.
    Espinosa-Ramírez M; Moya-Gallardo E; Araya-Román F; Riquelme-Sánchez S; Rodriguez-García G; Reid WD; Viscor G; Araneda OF; Gabrielli L; Contreras-Briceño F
    Front Physiol; 2021; 12():738063. PubMed ID: 34658921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Changes in Oxygen Muscle during Exercise with High-Flow Nasal Cannula Using Wearable NIRS Biosensors.
    Contreras-Briceño F; Espinosa-Ramírez M; Rivera-Greene A; Guerra-Venegas C; Lungenstrass-Poulsen A; Villagra-Reyes V; Caulier-Cisterna R; Araneda OF; Viscor G
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of NIRS portable device for measuring intercostal muscles oxygenation during exercise.
    Contreras-Briceño F; Espinosa-Ramirez M; Hevia G; Llambias D; Carrasco M; Cerda F; López-Fuenzalida A; García P; Gabrielli L; Viscor G
    J Sports Sci; 2019 Dec; 37(23):2653-2659. PubMed ID: 31419921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Intercostal Muscle Near-Infrared Spectroscopy for Estimating Respiratory Compensation Point in Trained Endurance Athletes.
    Romero-Arenas S; Quero-Calero CD; Abellan-Aynes O; Andreu-Caravaca L; Fernandez-Calero M; Manonelles P; Lopez-Plaza D
    Sports (Basel); 2023 Nov; 11(11):. PubMed ID: 37999429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia equally reduces the respiratory compensation point and the NIRS-derived [HHb] breakpoint during a ramp-incremental test in young active males.
    Azevedo RDA; J E BS; Inglis EC; Iannetta D; Murias JM
    Physiol Rep; 2020 Jun; 8(12):e14478. PubMed ID: 32592338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of severe intensity bouts on muscle oxygen saturation responses in trained cyclists.
    Yogev A; Arnold J; Nelson H; Clarke DC; Guenette JA; Sporer BC; Koehle MS
    Front Sports Act Living; 2023; 5():1086227. PubMed ID: 36909360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory muscle deoxygenation and ventilatory threshold assessments using near infrared spectroscopy in children.
    Moalla W; Dupont G; Berthoin S; Ahmaidi S
    Int J Sports Med; 2005 Sep; 26(7):576-82. PubMed ID: 16195992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex-related differences in profiles of muscle oxygen saturation of different muscles in trained cyclists during graded cycling exercise.
    Sendra-Pérez C; Priego-Quesada JI; Salvador-Palmer R; Murias JM; Encarnacion-Martinez A
    J Appl Physiol (1985); 2023 Nov; 135(5):1092-1101. PubMed ID: 37732376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of Respiratory Muscles Training by Voluntary Isocapnic Hyperpnea Versus Inspiratory Threshold Loading on Intercostales and Vastus Lateralis Muscles Deoxygenation Induced by Exercise in Physically Active Adults.
    Espinosa-Ramírez M; Riquelme S; Araya F; Rodríguez G; Figueroa-Martínez F; Gabrielli L; Viscor G; Reid WD; Contreras-Briceño F
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Between Decrease of Oxygenation During Incremental Exercise and Partial Pressure End-Tidal Carbon Dioxide: Near-Infrared Spectroscopy Vector Analysis.
    Kojima S; Morishita S; Hotta K; Qin W; Kato T; Oyama K; Tsubaki A
    Adv Exp Med Biol; 2021; 1269():119-124. PubMed ID: 33966205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training-Induced Changes in the Respiratory Compensation Point, Deoxyhemoglobin Break Point, and Maximal Lactate Steady State: Evidence of Equivalence.
    Inglis EC; Iannetta D; Keir DA; Murias JM
    Int J Sports Physiol Perform; 2020 Jan; 15(1):119-125. PubMed ID: 31034305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training zones through muscle oxygen saturation during a graded exercise test in cyclists and triathletes.
    Vasquez Bonilla AA; González-Custodio A; Timón R; Camacho-Cardenosa A; Camacho-Cardenosa M; Olcina G
    Biol Sport; 2023 Apr; 40(2):439-448. PubMed ID: 37077776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterising skeletal muscle haemoglobin saturation during exercise using near-infrared spectroscopy in chronic kidney disease.
    Wilkinson TJ; White AEM; Nixon DGD; Gould DW; Watson EL; Smith AC
    Clin Exp Nephrol; 2019 Jan; 23(1):32-42. PubMed ID: 29961156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold.
    van der Zwaard S; Jaspers RT; Blokland IJ; Achterberg C; Visser JM; den Uil AR; Hofmijster MJ; Levels K; Noordhof DA; de Haan A; de Koning JJ; van der Laarse WJ; de Ruiter CJ
    PLoS One; 2016; 11(9):e0162914. PubMed ID: 27631607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared spectroscopy-derived muscle
    de Aguiar RA; Turnes T; Borszcz FK; Raimundo JAG; Caputo F
    Exp Physiol; 2022 May; 107(5):476-488. PubMed ID: 35244956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement between Ventilatory Thresholds and Bilaterally Measured Vastus Lateralis Muscle Oxygen Saturation Breakpoints in Trained Cyclists: Effects of Age and Performance.
    Reinpõld K; Rannama I; Port K
    Sports (Basel); 2024 Jan; 12(2):. PubMed ID: 38393260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Related trends in locomotor and respiratory muscle oxygenation during exercise.
    Legrand R; Marles A; Prieur F; Lazzari S; Blondel N; Mucci P
    Med Sci Sports Exerc; 2007 Jan; 39(1):91-100. PubMed ID: 17218889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.