BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35330293)

  • 1. How Do Fungi Survive in the Sea and Respond to Climate Change?
    Jones EBG; Ramakrishna S; Vikineswary S; Das D; Bahkali AH; Guo SY; Pang KL
    J Fungi (Basel); 2022 Mar; 8(3):. PubMed ID: 35330293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal diversity from various marine habitats deduced through culture-independent studies.
    Manohar CS; Raghukumar C
    FEMS Microbiol Lett; 2013 Apr; 341(2):69-78. PubMed ID: 23363246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species richness and adaptation of marine fungi from deep-subseafloor sediments.
    Rédou V; Navarri M; Meslet-Cladière L; Barbier G; Burgaud G
    Appl Environ Microbiol; 2015 May; 81(10):3571-83. PubMed ID: 25769836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Freshwater to Marine Evolutionary Transition Revealed within
    Ramachandran A; McLatchie S; Walsh DA
    mBio; 2021 Jun; 12(3):e0130621. PubMed ID: 34154421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salinity, pH and temperature growth ranges of
    Su CJ; Hsieh SY; Chiang MW; Pang KL
    Mycology; 2020 Jan; 11(3):256-262. PubMed ID: 33062386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ecophysiological adaptability of tropical water organisms to salinity changes].
    Chung KS
    Rev Biol Trop; 2001 Mar; 49(1):9-13. PubMed ID: 11795174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge.
    Shrivastava J; Ndugwa M; Caneos W; De Boeck G
    Aquat Toxicol; 2019 Jul; 212():54-69. PubMed ID: 31075620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Properties of Three Pelagic Fungi Isolated from the Atlantic Ocean.
    Breyer E; Espada-Hinojosa S; Reitbauer M; Karunarathna SC; Baltar F
    J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.
    Agha M; Ennen JR; Bower DS; Nowakowski AJ; Sweat SC; Todd BD
    Biol Rev Camb Philos Soc; 2018 Aug; 93(3):1634-1648. PubMed ID: 29575680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High-Resolution Time Series Reveals Distinct Seasonal Patterns of Planktonic Fungi at a Temperate Coastal Ocean Site (Beaufort, North Carolina, USA).
    Duan Y; Xie N; Song Z; Ward CS; Yung CM; Hunt DE; Johnson ZI; Wang G
    Appl Environ Microbiol; 2018 Nov; 84(21):. PubMed ID: 30143506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Salinity Threshold Separating Fungal Communities in the Baltic Sea.
    Rojas-Jimenez K; Rieck A; Wurzbacher C; Jürgens K; Labrenz M; Grossart HP
    Front Microbiol; 2019; 10():680. PubMed ID: 30984159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological response to salinity, temperature, and pH changes by marine fungus Epicoccum nigrum.
    Ahumada-Rudolph R; Novoa V; Becerra J
    Environ Monit Assess; 2018 Dec; 191(1):35. PubMed ID: 30593600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea.
    De Leo F; Lo Giudice A; Alaimo C; De Carlo G; Rappazzo AC; Graziano M; De Domenico E; Urzì C
    Extremophiles; 2019 Jan; 23(1):9-17. PubMed ID: 30276472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change.
    Kumar V; Sarma VV; Thambugala KM; Huang JJ; Li XY; Hao GF
    Front Microbiol; 2021; 12():719000. PubMed ID: 34512597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding.
    Ogaki MB; Pinto OHB; Vieira R; Neto AA; Convey P; Carvalho-Silva M; Rosa CA; Câmara PEAS; Rosa LH
    Microb Ecol; 2021 Jul; 82(1):157-164. PubMed ID: 33404819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient.
    Maciá-Vicente JG; Ferraro V; Burruano S; Lopez-Llorca LV
    Microb Ecol; 2012 Oct; 64(3):668-79. PubMed ID: 22573239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma non-esterified fatty acids of elasmobranchs: comparisons of temperate and tropical species and effects of environmental salinity.
    Speers-Roesch B; Ip YK; Ballantyne JS
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Feb; 149(2):209-16. PubMed ID: 18203641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the CAZy Repertoire from the Marine-Derived Fungus
    Ben Ali W; Navarro D; Kumar A; Drula E; Turbé-Doan A; Correia LO; Baumberger S; Bertrand E; Faulds CB; Henrissat B; Sciara G; Mechichi T; Record E
    Mar Drugs; 2020 Sep; 18(9):. PubMed ID: 32916905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungi Sailing the Arctic Ocean: Speciose Communities in North Atlantic Driftwood as Revealed by High-Throughput Amplicon Sequencing.
    Rämä T; Davey ML; Nordén J; Halvorsen R; Blaalid R; Mathiassen GH; Alsos IG; Kauserud H
    Microb Ecol; 2016 Aug; 72(2):295-304. PubMed ID: 27147245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.