These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35330627)

  • 1. Ceramic Toughening Strategies for Biomedical Applications.
    Bai R; Sun Q; He Y; Peng L; Zhang Y; Zhang L; Lu W; Deng J; Zhuang Z; Yu T; Wei Y
    Front Bioeng Biotechnol; 2022; 10():840372. PubMed ID: 35330627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms.
    Meng YF; Zhu YB; Zhou LC; Meng XS; Yang YL; Zhao R; Xia J; Yang B; Lu YJ; Wu HA; Mao LB; Yu SH
    Adv Mater; 2022 Mar; 34(9):e2108267. PubMed ID: 34957604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of zirconia content on flexural strength and fracture toughness of dental zirconia toughened composite alumina ceramic].
    Zhao K; Zhang XP; Li XX; Zhu WJ
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2007 Jun; 25(3):295-8. PubMed ID: 17629212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toughening materials: enhancing resistance to fracture.
    Ritchie RO
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200437. PubMed ID: 34148425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of ceramic composites based on ZrO
    Santos CD; Coutinho IF; Amarante JEV; Alves MFRP; Coutinho MM; Moreira da Silva CR
    J Mech Behav Biomed Mater; 2021 Apr; 116():104372. PubMed ID: 33540326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Fracture Toughness and Conversion Degree of Resin-Based Dental Composites after Modification with Liquid Rubber.
    Pałka K; Kleczewska J; Sasimowski E; Belcarz A; Przekora A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Peculiarities of Structure Formation and Properties of Zirconia-Based Nanocomposites with Addition of Al
    Danilenko I; Lasko G; Brykhanova I; Burkhovetski V; Ahkhozov L
    Nanoscale Res Lett; 2017 Dec; 12(1):125. PubMed ID: 28235360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toughening Ceramic-Based Composites by Homogenizing the Lattice Strain at Phase Boundaries.
    Jiang W; Lu H; Chen J; Luo L; Liu X; Wang H; Song X
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19604-19615. PubMed ID: 37022998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toughening Mechanisms in Nanolayered MAX Phase Ceramics-A Review.
    Chen X; Bei G
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toughening and Crack Healing Mechanisms in Nanotwinned Diamond Composites with Various Polytypes.
    Zeng Y; Zhang Q; Wang Y; Jiang J; Xing H; Li X
    Phys Rev Lett; 2021 Aug; 127(6):066101. PubMed ID: 34420348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites.
    Ahmad I; Islam M; Subhani T; Zhu Y
    Nanotechnology; 2016 Oct; 27(42):425704. PubMed ID: 27623018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic.
    Vagkopoulou T; Koutayas SO; Koidis P; Strub JR
    Eur J Esthet Dent; 2009; 4(2):130-51. PubMed ID: 19655651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of HfB₂ and HfN Additions on the Microstructures and Mechanical Properties of TiB₂-Based Ceramic Tool Materials.
    An J; Song J; Liang G; Gao J; Xie J; Cao L; Wang S; Lv M
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanics of fracturing in nanoceramics.
    Ovid'ko IA
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eigenstrain Toughening in Presence of Elastic Heterogeneity with Application to Bone.
    Wang Z; Vashishth D; Picu RC
    Int J Solids Struct; 2018 Jul; 144-145():137-144. PubMed ID: 31105330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcing Mechanisms of Graphene and Nano-TiC in Al
    Sun Z; Zhao J; Wang X; Cui E; Yu H
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32932947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):449-56. PubMed ID: 15081551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-tunable toughening in a polymer-metal-ceramic stack using an interfacial molecular nanolayer.
    Kwan M; Braccini M; Lane MW; Ramanath G
    Nat Commun; 2018 Dec; 9(1):5249. PubMed ID: 30531806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):441-8. PubMed ID: 15081550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.