These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35330962)

  • 1. A protocol to differentiate nociceptors, mechanoreceptors, and proprioceptors from human pluripotent stem cells.
    Saito-Diaz K; Zeltner N
    STAR Protoc; 2022 Jun; 3(2):101187. PubMed ID: 35330962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of Peripheral Nociceptive, Mechanoreceptive, and Proprioceptive Sensory Neurons from the same Culture of Human Pluripotent Stem Cells.
    Saito-Diaz K; Street JR; Ulrichs H; Zeltner N
    Stem Cell Reports; 2021 Mar; 16(3):446-457. PubMed ID: 33545066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for generating postganglionic sympathetic neurons using human pluripotent stem cells for electrophysiological and functional assessments.
    Wu HF; Art J; Saini T; Zeltner N
    STAR Protoc; 2024 Jun; 5(2):102970. PubMed ID: 38517897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of human pluripotent stem cell-derived sensory neuron subtypes by immunopanning.
    Saito-Diaz K; James C; Patel AJ; Zeltner N
    Front Cell Dev Biol; 2023; 11():1101423. PubMed ID: 37206924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for enhanced proliferation of human pluripotent stem cells in tryptophan-fortified media.
    Kameda K; Someya S; Fujita J; Fukuda K; Tohyama S
    STAR Protoc; 2022 Jun; 3(2):101341. PubMed ID: 35496810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable generation of sensory neurons from human pluripotent stem cells.
    Deng T; Jovanovic VM; Tristan CA; Weber C; Chu PH; Inman J; Ryu S; Jethmalani Y; Ferreira de Sousa J; Ormanoglu P; Twumasi P; Sen C; Shim J; Jayakar S; Bear Zhang HX; Jo S; Yu W; Voss TC; Simeonov A; Bean BP; Woolf CJ; Singeç I
    Stem Cell Reports; 2023 Apr; 18(4):1030-1047. PubMed ID: 37044067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Optimized Protocol for the Generation of Midbrain Dopamine Neurons under Defined Conditions.
    Gantner CW; Cota-Coronado A; Thompson LH; Parish CL
    STAR Protoc; 2020 Sep; 1(2):100065. PubMed ID: 33111103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells in Fully Chemically Defined Conditions.
    Lin Y; Zou J
    STAR Protoc; 2020 Jun; 1(1):. PubMed ID: 32734277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells.
    Münst S; Koch P; Kesavan J; Alexander-Mays M; Münst B; Blaess S; Brüstle O
    Methods; 2018 Jan; 133():65-80. PubMed ID: 29037816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed differentiation of human pluripotent stem cells into epidermal keratinocyte-like cells.
    Ali G; Abdelalim EM
    STAR Protoc; 2022 Sep; 3(3):101613. PubMed ID: 35990735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Differentiation of Postganglionic Sympathetic Neurons using Human Pluripotent Stem Cells under Feeder-free and Chemically Defined Culture Conditions.
    Wu HF; Zeltner N
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary proprioceptive neurons from human induced pluripotent stem cells: a cell model for afferent ataxias.
    Dionisi C; Rai M; Chazalon M; Schiffmann SN; Pandolfo M
    Sci Rep; 2020 May; 10(1):7752. PubMed ID: 32385372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process control and
    Manstein F; Ullmann K; Triebert W; Zweigerdt R
    STAR Protoc; 2021 Dec; 2(4):100988. PubMed ID: 34917976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for germ lineage differentiation of primed human pluripotent stem cells using chemically defined, nutrient-balanced media.
    Lu V; Doan MT; Roy IJ; Torres A; Teitell MA
    STAR Protoc; 2022 Sep; 3(3):101568. PubMed ID: 35880122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro.
    Calvo-Garrido J; Winn D; Maffezzini C; Wedell A; Freyer C; Falk A; Wredenberg A
    STAR Protoc; 2021 Jun; 2(2):100528. PubMed ID: 34027486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for the Generation of Definitive Hematopoietic Progenitors from Human Pluripotent Stem Cells.
    Nafria M; Bonifer C; Stanley EG; Ng ES; Elefanty AG
    STAR Protoc; 2020 Dec; 1(3):100130. PubMed ID: 33377024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol to derive human trophoblast stem cells directly from primed pluripotent stem cells.
    Wei Y; Xiao L; Ma L; Wang Z; Huang L; Li H; Pan G; Lye SJ; Shan Y
    STAR Protoc; 2022 Sep; 3(3):101638. PubMed ID: 36042882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized protocol for analysis of neural stem proliferation in human-pluripotent-stem-cell-derived cerebral organoids.
    Tang XY; Wang D; Zhang XY; Xu M; Liu Y
    STAR Protoc; 2023 Mar; 4(2):102169. PubMed ID: 36924505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Generation of Trunk Neural Crest and Sympathetic Neurons from Human Pluripotent Stem Cells Via a Neuromesodermal Axial Progenitor Intermediate.
    Frith TJR; Tsakiridis A
    Curr Protoc Stem Cell Biol; 2019 Jun; 49(1):e81. PubMed ID: 30688409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for the Standardized Generation of Forward Programmed Cryopreservable Excitatory and Inhibitory Forebrain Neurons.
    Peitz M; Krutenko T; Brüstle O
    STAR Protoc; 2020 Jun; 1(1):100038. PubMed ID: 33111086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.