These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 3533139)
1. Formaldehyde metabolism by Escherichia coli. Detection by in vivo 13C NMR spectroscopy of S-(hydroxymethyl)glutathione as a transient intracellular intermediate. Mason RP; Sanders JK; Crawford A; Hunter BK Biochemistry; 1986 Aug; 25(16):4504-7. PubMed ID: 3533139 [TBL] [Abstract][Full Text] [Related]
2. Formaldehyde metabolism by Escherichia coli. In vivo carbon, deuterium, and two-dimensional NMR observations of multiple detoxifying pathways. Hunter BK; Nicholls KM; Sanders JK Biochemistry; 1984 Jan; 23(3):508-14. PubMed ID: 6367820 [TBL] [Abstract][Full Text] [Related]
3. Formaldehyde metabolism by Escherichia coli. Carbon and solvent deuterium incorporation into glycerol, 1,2-propanediol, and 1,3-propanediol. Hunter BK; Nicholls KM; Sanders JK Biochemistry; 1985 Jul; 24(15):4148-55. PubMed ID: 3902080 [TBL] [Abstract][Full Text] [Related]
4. Bioactivation of [13C]dichloromethane in mouse, rat, and human liver cytosol: 13C nuclear magnetic resonance spectroscopic studies. Hashmi M; Dechert S; Dekant W; Anders MW Chem Res Toxicol; 1994; 7(3):291-6. PubMed ID: 8075359 [TBL] [Abstract][Full Text] [Related]
5. A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. Goenrich M; Bartoschek S; Hagemeier CH; Griesinger C; Vorholt JA J Biol Chem; 2002 Feb; 277(5):3069-72. PubMed ID: 11741920 [TBL] [Abstract][Full Text] [Related]
6. Kinetic mechanism of human glutathione-dependent formaldehyde dehydrogenase. Sanghani PC; Stone CL; Ray BD; Pindel EV; Hurley TD; Bosron WF Biochemistry; 2000 Sep; 39(35):10720-9. PubMed ID: 10978156 [TBL] [Abstract][Full Text] [Related]
7. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe. Agris PF; Sierzputowska-Gracz H; Smith C Biochemistry; 1986 Sep; 25(18):5126-31. PubMed ID: 3533144 [TBL] [Abstract][Full Text] [Related]
8. Complexes of diphenylarsinic acid and phenylarsonic acid with thiols: a 1H and 13C NMR study. Nakayama T; Isobe T; Nakamiya K; Edmonds JS; Shibata Y; Morita M Magn Reson Chem; 2005 Jul; 43(7):543-50. PubMed ID: 15858784 [TBL] [Abstract][Full Text] [Related]
9. Metabolites of [3-13C]1,2-dibromo-3-chloropropane in male rats studied by 13C and 1H-13C correlated two-dimensional NMR spectroscopy. Dohn DR; Graziano MJ; Casida JE Biochem Pharmacol; 1988 Sep; 37(18):3485-95. PubMed ID: 3421999 [TBL] [Abstract][Full Text] [Related]
10. 13C NMR spectroscopic measurement of glutathione synthesis and antioxidant metabolism in the intact ocular lens. Willis JA; Schleich T Biochem Biophys Res Commun; 1992 Jul; 186(2):931-5. PubMed ID: 1497676 [TBL] [Abstract][Full Text] [Related]
11. Studies on the reaction of glutathione and formaldehyde using NMR. Hopkinson RJ; Barlow PS; Schofield CJ; Claridge TD Org Biomol Chem; 2010 Nov; 8(21):4915-20. PubMed ID: 20737071 [TBL] [Abstract][Full Text] [Related]
12. Formaldehyde adducts of glutathione. Structure elucidation by two-dimensional n.m.r. spectroscopy and fast-atom-bombardment tandem mass spectrometry. Naylor S; Mason RP; Sanders JK; Williams DH; Moneti G Biochem J; 1988 Jan; 249(2):573-9. PubMed ID: 3342029 [TBL] [Abstract][Full Text] [Related]
13. Heteronuclear nuclear magnetic resonance studies of cobalt corrinoids. 15. The structure of glutathionylcobalamin: a 1H and 13C two-dimensional nuclear magnetic resonance study at 600 MHz. Brown KL; Zou X; Savon SR; Jacobsen DW Biochemistry; 1993 Aug; 32(33):8421-8. PubMed ID: 8357793 [TBL] [Abstract][Full Text] [Related]
14. 1H, 13C and 15N resonance assignments of the N-terminal 16 kDa domain of Escherichia coli Ada protein. Takinowaki H; Matsuda Y; Yoshida T; Kobayashi Y; Ohkubo T J Biomol NMR; 2004 Jul; 29(3):447-8. PubMed ID: 15213462 [No Abstract] [Full Text] [Related]
15. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Steinhof O; Kibrik ÉJ; Scherr G; Hasse H Magn Reson Chem; 2014 Apr; 52(4):138-62. PubMed ID: 24496721 [TBL] [Abstract][Full Text] [Related]
16. 13C-Isotopic enrichment of glutathione in cell extracts determined by nuclear magnetic resonance spectroscopy. Gamcsik MP Anal Biochem; 1999 Jan; 266(1):58-65. PubMed ID: 9887213 [TBL] [Abstract][Full Text] [Related]
17. High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Ugurbil K; Brown TR; den Hollander JA; Glynn P; Shulman RG Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3742-6. PubMed ID: 358201 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive in vivo detection of glutathione metabolism in tumors. Thelwall PE; Yemin AY; Gillian TL; Simpson NE; Kasibhatla MS; Rabbani ZN; Macdonald JM; Blackband SJ; Gamcsik MP Cancer Res; 2005 Nov; 65(22):10149-53. PubMed ID: 16287997 [TBL] [Abstract][Full Text] [Related]
20. Assignments of backbone 1H, 13C, and 15N resonances and secondary structure of ribonuclease H from Escherichia coli by heteronuclear three-dimensional NMR spectroscopy. Yamazaki T; Yoshida M; Kanaya S; Nakamura H; Nagayama K Biochemistry; 1991 Jun; 30(24):6036-47. PubMed ID: 1646006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]