These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3533142)

  • 1. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles.
    Westhof E; Sundaralingam M
    Biochemistry; 1986 Aug; 25(17):4868-78. PubMed ID: 3533142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic refinement of yeast aspartic acid transfer RNA.
    Westhof E; Dumas P; Moras D
    J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals.
    Westhof E; Dumas P; Moras D
    Acta Crystallogr A; 1988 Mar; 44 ( Pt 2)():112-23. PubMed ID: 3272146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution.
    Schneider G; Lindqvist Y; Lundqvist T
    J Mol Biol; 1990 Feb; 211(4):989-1008. PubMed ID: 2107319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of yeast tRNAAsp: atomic coordinates.
    Dumas P; Ebel JP; Giegé R; Moras D; Thierry JC; Westhof E
    Biochimie; 1985 Jun; 67(6):597-606. PubMed ID: 3902098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structlre of transfer RNA molecules containing the long variable loop.
    Brennan T; Sundaralingam M
    Nucleic Acids Res; 1976 Nov; 3(11):3235-50. PubMed ID: 794835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA.
    Quigley GJ; Teeter MM; Rich A
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):64-8. PubMed ID: 343112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loop stereochemistry and dynamics in transfer RNA.
    Westhof E; Dumas P; Moras D
    J Biomol Struct Dyn; 1983 Oct; 1(2):337-55. PubMed ID: 6401114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bond indices and tertiary structure of yeast tRNAPhe.
    de Giambiagi MS; Giambiagi M; Esquivel DM
    Z Naturforsch C Biosci; 1983; 38(7-8):621-30. PubMed ID: 6356669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNA(Phe).
    Kumbhar NM; Kumbhar BV; Sonawane KD
    J Mol Graph Model; 2012 Sep; 38():174-85. PubMed ID: 23073221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited.
    Shi H; Moore PB
    RNA; 2000 Aug; 6(8):1091-105. PubMed ID: 10943889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Tworowska I; Nikonowicz EP
    Biochemistry; 2004 Jan; 43(1):55-66. PubMed ID: 14705931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonding in yeast phenylalanine transfer RNA.
    Quigley GJ; Wang AH; Seeman NC; Suddath FL; Rich A; Sussman JL; Kim SH
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4866-70. PubMed ID: 1108007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances.
    Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG
    Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Mar; 21(5):855-61. PubMed ID: 7041969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding.
    Bujalowski W; Graeser E; McLaughlin LW; Proschke D
    Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid.
    Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE
    Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong magnesium binding sites in yeast phenylalanine transfer RNA.
    Narayanan P; Ramirez F
    Biochim Biophys Acta; 1978 May; 518(3):539-42. PubMed ID: 350283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.