BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3533144)

  • 1. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe.
    Agris PF; Sierzputowska-Gracz H; Smith C
    Biochemistry; 1986 Sep; 25(18):5126-31. PubMed ID: 3533144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach.
    Schmidt PG; Sierzputowska-Gracz H; Agris PF
    Biochemistry; 1987 Dec; 26(26):8529-34. PubMed ID: 3327524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid.
    Smith C; Schmidt PG; Petsch J; Agris PF
    Biochemistry; 1985 Mar; 24(6):1434-40. PubMed ID: 3886007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species.
    Agris PF; Schmidt PG
    Nucleic Acids Res; 1980 May; 8(9):2085-91. PubMed ID: 6159600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly.
    Hyde EI
    Eur J Biochem; 1986 Feb; 155(1):57-68. PubMed ID: 2419133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-13 NMR studies on [4-13C] uracil labelled E. coli transfer RNA1(Val1).
    Schweizer MP; Hamill WD; Walkiw IJ; Horton WJ; Grant DM
    Nucleic Acids Res; 1980 May; 8(9):2075-83. PubMed ID: 7001371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Hardin CC; Gollnick P; Kallenbach NR; Cohn M; Horowitz J
    Biochemistry; 1986 Sep; 25(19):5699-709. PubMed ID: 3535884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and NMR studies of [methyl-13C]methionine-labeled truncated methionyl-tRNA synthetase.
    Rosevear PR
    Biochemistry; 1988 Oct; 27(20):7931-9. PubMed ID: 3061464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of an Escherichia coli mutant for carbon-13 enrichment of tRNA for NMR studies.
    Agris PF; Fujiwara FG; Schmidt CF; Loeppky RN
    Nucleic Acids Res; 1975 Sep; 2(9):1503-12. PubMed ID: 1101225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imino-proton resonances of yeast tRNAPhe studied by two-dimensional nuclear Overhauser enhancement spectroscopy.
    Heerschap A; Mellema JR; Janssen HG; Walters JA; Haasnoot CA; Hilbers CW
    Eur J Biochem; 1985 Jun; 149(3):649-55. PubMed ID: 2988955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative structural analysis of 1-methyladenosine, 7-methylguanosine, ethenoadenosine and their protonated salts IV: 1H, 13C, and 15N NMR studies at natural isotope abundance.
    Sierzputowska-Gracz H; Gopal HD; Agris PF
    Nucleic Acids Res; 1986 Oct; 14(19):7783-801. PubMed ID: 3022235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 15N-labeled tRNA. Identification of dihydrouridine in Escherichia coli tRNAfMet, tRNALys, and tRNAPhe by 1H-15N two-dimensional NMR.
    Davis DR; Griffey RH; Yamaizumi Z; Nishimura S; Poulter CD
    J Biol Chem; 1986 Mar; 261(8):3584-7. PubMed ID: 3512560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of zinc ions on tRNA structure: imino proton NMR spectroscopy.
    Flanagan JM; Jacobson KB
    Biochemistry; 1988 Jul; 27(15):5778-85. PubMed ID: 3052585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15N and 13C labeling of Escherichia coli tRNAs toward the NMR analysis.
    Kawai G; Takayanagi M; Hayashi N; Niimi T; Sanpei G; Mizobuchi K; Miyazawa T; Tokoyama S; Watanabe K
    Nucleic Acids Symp Ser; 1992; (27):131-2. PubMed ID: 1283902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR studies of ion binding to Escherichia coli tRNAPhe.
    Hyde EI; Reid BR
    Biochemistry; 1985 Jul; 24(16):4315-25. PubMed ID: 3902084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.