These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 3533150)

  • 1. Elucidation of the factors which determine reaction-rate constants and biological specificity for electron-transfer proteins.
    Tollin G; Meyer TE; Cusanovich MA
    Biochim Biophys Acta; 1986 Nov; 853(1):29-41. PubMed ID: 3533150
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidation of Fe(II) by Flavins under Anoxic Conditions.
    Zhang P; Van Cappellen P; Pi K; Yuan S
    Environ Sci Technol; 2020 Sep; 54(18):11622-11630. PubMed ID: 32812763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanisms of electron transfer proteins.
    Meyer TE; Przysiecki CT; Watkins JA; Bhattacharyya A; Simondsen RP; Cusanovich MA; Tollin G
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6740-4. PubMed ID: 6580615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: thermodynamics, kinetics, and mechanism.
    Blankenhorn G
    Eur J Biochem; 1976 Aug; 67(1):67-80. PubMed ID: 134889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and mode of action of flavoproteins.
    Merrill AH; Lambeth JD; Edmondson DE; McCormick DB
    Annu Rev Nutr; 1981; 1():281-317. PubMed ID: 6764718
    [No Abstract]   [Full Text] [Related]  

  • 7. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.
    Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS
    Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins.
    Tu SC
    J Biol Chem; 1982 Apr; 257(7):3719-25. PubMed ID: 7061505
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy.
    Paul RJ; Schneckenburger H
    Naturwissenschaften; 1996 Jan; 83(1):32-5. PubMed ID: 8637605
    [No Abstract]   [Full Text] [Related]  

  • 13. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants.
    O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of 2-, 4- and 5-nitroimidazole drugs by hydrogenase 1 in Clostridium pasteurianum.
    Church DL; Rabin HR; Laishley EJ
    J Antimicrob Chemother; 1990 Jan; 25(1):15-23. PubMed ID: 2180890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of azo reduction by Streptococcus faecalis. II. The role of soluble flavins.
    Gingell R; Walker R
    Xenobiotica; 1971 May; 1(3):231-9. PubMed ID: 4341449
    [No Abstract]   [Full Text] [Related]  

  • 16. Anaerobic reduction of nitroimidazoles by reduced flavin mononucleotide and by xanthine oxidase.
    Clarke ED; Wardman P; Goulding KH
    Biochem Pharmacol; 1980 Oct; 29(19):2684-7. PubMed ID: 6893549
    [No Abstract]   [Full Text] [Related]  

  • 17. The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite.
    Lambeth DO; Palmer G
    J Biol Chem; 1973 Sep; 248(17):6095-103. PubMed ID: 4353631
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxidation-reduction and transient kinetic studies of spinach ferredoxin-dependent glutamate synthase.
    Hirasawa M; Hurley JK; Salamon Z; Tollin G; Knaff DB
    Arch Biochem Biophys; 1996 Jun; 330(1):209-15. PubMed ID: 8651698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavoenzyme structure and function. Approaches using flavin analogues.
    Edmondson D; Ghisla S
    Methods Mol Biol; 1999; 131():157-79. PubMed ID: 10494549
    [No Abstract]   [Full Text] [Related]  

  • 20. YeeO from Escherichia coli exports flavins.
    McAnulty MJ; Wood TK
    Bioengineered; 2014; 5(6):386-92. PubMed ID: 25482085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.