BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 35331627)

  • 1. Reassessing the embryonic origin and potential of craniofacial ectomesenchyme.
    Fabian P; Crump JG
    Semin Cell Dev Biol; 2023 Mar; 138():45-53. PubMed ID: 35331627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest.
    Das A; Crump JG
    PLoS Genet; 2012; 8(5):e1002710. PubMed ID: 22589745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme.
    Lee RT; Nagai H; Nakaya Y; Sheng G; Trainor PA; Weston JA; Thiery JP
    Development; 2013 Dec; 140(24):4890-902. PubMed ID: 24198279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest.
    Cox SG; Kim H; Garnett AT; Medeiros DM; An W; Crump JG
    PLoS Genet; 2012 Sep; 8(9):e1002938. PubMed ID: 23028350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonneural epithelial domain of embryonic cranial neural folds gives rise to ectomesenchyme.
    Breau MA; Pietri T; Stemmler MP; Thiery JP; Weston JA
    Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7750-5. PubMed ID: 18515427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivation of the pluripotency program precedes formation of the cranial neural crest.
    Zalc A; Sinha R; Gulati GS; Wesche DJ; Daszczuk P; Swigut T; Weissman IL; Wysocka J
    Science; 2021 Feb; 371(6529):. PubMed ID: 33542111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis.
    Weston JA; Yoshida H; Robinson V; Nishikawa S; Fraser ST; Nishikawa S
    Dev Dyn; 2004 Jan; 229(1):118-30. PubMed ID: 14699583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.
    Lee RT; Knapik EW; Thiery JP; Carney TJ
    Development; 2013 Jul; 140(14):2923-32. PubMed ID: 23739134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of cranial ectomesenchyme fate by Nr2f nuclear receptors.
    Okeke C; Paulding D; Riedel A; Paudel S; Phelan C; Teng CS; Barske L
    Development; 2022 Dec; 149(23):. PubMed ID: 36367707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic origin and serial homology of gill arches and paired fins in the skate,
    Sleight VA; Gillis JA
    Elife; 2020 Nov; 9():. PubMed ID: 33198887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of ectomesenchyme.
    Blentic A; Tandon P; Payton S; Walshe J; Carney T; Kelsh RN; Mason I; Graham A
    Dev Dyn; 2008 Mar; 237(3):592-601. PubMed ID: 18224711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae.
    Taniguchi Y; Kurth T; Medeiros DM; Tazaki A; Ramm R; Epperlein HH
    Sci Rep; 2015 Jun; 5():11428. PubMed ID: 26086331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme.
    Shigetani Y; Nobusada Y; Kuratani S
    Dev Biol; 2000 Dec; 228(1):73-85. PubMed ID: 11087627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between neural crest cells and cranial mesoderm during head muscle development.
    Grenier J; Teillet MA; Grifone R; Kelly RG; Duprez D
    PLoS One; 2009; 4(2):e4381. PubMed ID: 19198652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches.
    Trainor PA; Tam PP
    Development; 1995 Aug; 121(8):2569-82. PubMed ID: 7671820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The issue of the multipotency of the neural crest cells.
    Dupin E; Calloni GW; Coelho-Aguiar JM; Le Douarin NM
    Dev Biol; 2018 Dec; 444 Suppl 1():S47-S59. PubMed ID: 29614271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AP2-dependent signals from the ectoderm regulate craniofacial development in the zebrafish embryo.
    Knight RD; Javidan Y; Zhang T; Nelson S; Schilling TF
    Development; 2005 Jul; 132(13):3127-38. PubMed ID: 15944192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo.
    Fonseca BF; Couly G; Dupin E
    BMC Dev Biol; 2017 Oct; 17(1):13. PubMed ID: 29017464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.