BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35331688)

  • 1. Engineering rhodopsins' activation spectra using a FRET-based approach.
    Beck C; Gong Y
    Biophys J; 2022 May; 121(9):1765-1776. PubMed ID: 35331688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broad-Band Activatable White-Opsin.
    Batabyal S; Cervenka G; Ha JH; Kim YT; Mohanty S
    PLoS One; 2015; 10(9):e0136958. PubMed ID: 26360377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption.
    Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Spudich JL
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22833-22840. PubMed ID: 32873643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.
    Tucker K; Sridharan S; Adesnik H; Brohawn SG
    Nat Commun; 2022 Aug; 13(1):4842. PubMed ID: 35977941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances and prospects of rhodopsin-based optogenetics in plant research.
    Zhou Y; Ding M; Nagel G; Konrad KR; Gao S
    Plant Physiol; 2021 Oct; 187(2):572-589. PubMed ID: 35237820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons.
    Vierock J; Rodriguez-Rozada S; Dieter A; Pieper F; Sims R; Tenedini F; Bergs ACF; Bendifallah I; Zhou F; Zeitzschel N; Ahlbeck J; Augustin S; Sauter K; Papagiakoumou E; Gottschalk A; Soba P; Emiliani V; Engel AK; Hegemann P; Wiegert JS
    Nat Commun; 2021 Jul; 12(1):4527. PubMed ID: 34312384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic-optimized CoChR variant with enhanced high-frequency spiking fidelity.
    Bi X; Beck C; Gong Y
    Biophys J; 2022 Nov; 121(21):4166-4178. PubMed ID: 36151721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 14. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins.
    Forli A; Pisoni M; Printz Y; Yizhar O; Fellin T
    Elife; 2021 May; 10():. PubMed ID: 34032211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-speed, bright, red fluorescent voltage sensor to detect neural activity.
    Beck C; Gong Y
    Sci Rep; 2019 Nov; 9(1):15878. PubMed ID: 31685893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating cardiac physiology in engineered heart tissue with the bidirectional optogenetic tool BiPOLES.
    Schwarzová B; Stüdemann T; Sönmez M; Rössinger J; Pan B; Eschenhagen T; Stenzig J; Wiegert JS; Christ T; Weinberger F
    Pflugers Arch; 2023 Dec; 475(12):1463-1477. PubMed ID: 37863976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride.
    Govorunova EG; Spudich EN; Lane CE; Sineshchekov OA; Spudich JL
    mBio; 2011; 2(3):e00115-11. PubMed ID: 21693637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior.
    Wietek J; Rodriguez-Rozada S; Tutas J; Tenedini F; Grimm C; Oertner TG; Soba P; Hegemann P; Wiegert JS
    Sci Rep; 2017 Nov; 7(1):14957. PubMed ID: 29097684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.