These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35331756)

  • 1. Predicting potential wildfire severity across Southern Europe with global data sources.
    Fernández-García V; Beltrán-Marcos D; Fernández-Guisuraga JM; Marcos E; Calvo L
    Sci Total Environ; 2022 Jul; 829():154729. PubMed ID: 35331756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape.
    Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L
    J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age.
    Collins L; Bennett AF; Leonard SWJ; Penman TD
    Glob Chang Biol; 2019 Nov; 25(11):3829-3843. PubMed ID: 31215102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved accuracy of wildfire simulations using fuel hazard estimates based on environmental data.
    Penman TD; McColl-Gausden SC; Cirulis BA; Kultaev D; Ababei DA; Bennett LT
    J Environ Manage; 2022 Jan; 301():113789. PubMed ID: 34592661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing fuel treatment effectiveness using satellite imagery and spatial statistics.
    Wimberly MC; Cochrane MA; Baer AD; Pabst K
    Ecol Appl; 2009 Sep; 19(6):1377-84. PubMed ID: 19769087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions.
    García-Llamas P; Suárez-Seoane S; Fernández-Manso A; Quintano C; Calvo L
    J Environ Manage; 2020 Oct; 271():110706. PubMed ID: 32778251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.
    Lecina-Diaz J; Alvarez A; Retana J
    PLoS One; 2014; 9(1):e85127. PubMed ID: 24465492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems.
    Resco de Dios V; Hedo J; Cunill Camprubí À; Thapa P; Martínez Del Castillo E; Martínez de Aragón J; Bonet JA; Balaguer-Romano R; Díaz-Sierra R; Yebra M; Boer MM
    Sci Total Environ; 2021 Nov; 797():149104. PubMed ID: 34303242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.
    Stevens-Rumann C; Morgan P
    Ecol Appl; 2016 Sep; 26(6):1842-1853. PubMed ID: 27755710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impacts of wildfires of different burn severities on vegetation structure across the western United States rangelands.
    Li Z; Angerer JP; Wu XB
    Sci Total Environ; 2022 Nov; 845():157214. PubMed ID: 35810897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconstructing the King megafire.
    Coen JL; Stavros EN; Fites-Kaufman JA
    Ecol Appl; 2018 Sep; 28(6):1565-1580. PubMed ID: 29797684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe.
    Rodrigues M; Cunill Camprubí À; Balaguer-Romano R; Coco Megía CJ; Castañares F; Ruffault J; Fernandes PM; Resco de Dios V
    Sci Total Environ; 2023 Feb; 859(Pt 2):160320. PubMed ID: 36410479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating priority locations and potential benefits for building a nation-wide fuel break network in Portugal.
    Aparício BA; Alcasena F; Ager A; Chung W; Pereira JMC; Sá ACL
    J Environ Manage; 2022 Oct; 320():115920. PubMed ID: 35933873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event.
    Prichard SJ; Kennedy MC
    Ecol Appl; 2014 Apr; 24(3):571-90. PubMed ID: 24834742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of fuel structure derived from terrestrial laser scanning (TLS) on wildfire severity in logged forests.
    Wilson N; Bradstock R; Bedward M
    J Environ Manage; 2022 Jan; 302(Pt A):114011. PubMed ID: 34735830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing climate reallocates the carbon debt of frequent-fire forests.
    Goodwin MJ; North MP; Zald HSJ; Hurteau MD
    Glob Chang Biol; 2020 Nov; 26(11):6180-6189. PubMed ID: 32810926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global increase in wildfire risk due to climate-driven declines in fuel moisture.
    Ellis TM; Bowman DMJS; Jain P; Flannigan MD; Williamson GJ
    Glob Chang Biol; 2022 Feb; 28(4):1544-1559. PubMed ID: 34800319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.