BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35331768)

  • 1. Factors controlling groundwater radioactivity in arid environments: An automated machine learning approach.
    Fallatah O; Ahmed M; Gyawali B; Alhawsawi A
    Sci Total Environ; 2022 Jul; 830():154707. PubMed ID: 35331768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods.
    Taşan M; Taşan S; Demir Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):2866-2890. PubMed ID: 35941499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration.
    Band SS; Janizadeh S; Pal SC; Chowdhuri I; Siabi Z; Norouzi A; Melesse AM; Shokri M; Mosavi A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of natural radioactivity in irrigation water of drilled wells in northwestern Saudi Arabia.
    Alkhomashi N; Al-Hamarneh IF; Almasoud FI
    Chemosphere; 2016 Feb; 144():1928-36. PubMed ID: 26547028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of radioactivity contents in bedrock groundwater samples from the northern region of Saudi Arabia.
    Almasoud FI; Ababneh ZQ; Alanazi YJ; Khandaker MU; Sayyed MI
    Chemosphere; 2020 Mar; 242():125181. PubMed ID: 31671301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States.
    Ransom KM; Nolan BT; Stackelberg PE; Belitz K; Fram MS
    Sci Total Environ; 2022 Feb; 807(Pt 3):151065. PubMed ID: 34673076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural radioactivity in groundwater from the south-eastern Arabian Peninsula and environmental implications.
    Murad A; Zhou XD; Yi P; Alshamsi D; Aldahan A; Hou XL; Yu ZB
    Environ Monit Assess; 2014 Oct; 186(10):6157-67. PubMed ID: 24903925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radioactivity in the groundwater of a high background radiation area.
    Shabana EI; Kinsara AA
    J Environ Radioact; 2014 Nov; 137():181-189. PubMed ID: 25087070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of weighted arithmetic water quality index for urban water quality using ensemble machine learning model.
    Mohseni U; Pande CB; Chandra Pal S; Alshehri F
    Chemosphere; 2024 Mar; 352():141393. PubMed ID: 38325619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest.
    He S; Wu J; Wang D; He X
    Chemosphere; 2022 Mar; 290():133388. PubMed ID: 34952022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptibility Assessment of Groundwater Nitrate Contamination Using an Ensemble Machine Learning Approach.
    Hosseini FS; Choubin B; Bagheri-Gavkosh M; Karimi O; Taromideh F; Mako C
    Ground Water; 2023; 61(4):510-516. PubMed ID: 36127852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of groundwater quality using efficient machine learning technique.
    Singha S; Pasupuleti S; Singha SS; Singh R; Kumar S
    Chemosphere; 2021 Aug; 276():130265. PubMed ID: 34088106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient nature of riverbank filtered drinking water supply systems - A new challenge of natural radioactivity assessment.
    Csondor K; Baják P; Surbeck H; Izsák B; Horváth Á; Vargha M; Erőss A
    J Environ Radioact; 2020 Jan; 211():106072. PubMed ID: 31585381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing remote sensing and machine learning-driven frameworks for groundwater withdrawal estimation in Arizona: Linking land subsidence to groundwater withdrawals.
    Majumdar S; Smith R; Conway BD; Lakshmi V
    Hydrol Process; 2022 Nov; 36(11):e14757. PubMed ID: 36636486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of regional groundwater levels in arid regions using interpretable machine learning models.
    Liu Q; Gui D; Zhang L; Niu J; Dai H; Wei G; Hu BX
    Sci Total Environ; 2022 Jul; 831():154902. PubMed ID: 35364142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping specific groundwater nitrate concentrations from spatial data using machine learning: A case study of chongqing, China.
    Liang Y; Zhang X; Gan L; Chen S; Zhao S; Ding J; Kang W; Yang H
    Heliyon; 2024 Mar; 10(6):e27867. PubMed ID: 38524545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimisation and interpretation of machine and deep learning models for improved water quality management in Lake Loktak.
    Talukdar S; Shahfahad ; Bera S; Naikoo MW; Ramana GV; Mallik S; Kumar PA; Rahman A
    J Environ Manage; 2024 Feb; 351():119866. PubMed ID: 38147770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid approach based on simulation, optimization, and estimation of conjunctive use of surface water and groundwater resources.
    Arya Azar N; Kayhomayoon Z; Ghordoyee Milan S; Zarif Sanayei H; Berndtsson R; Nematollahi Z
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56828-56844. PubMed ID: 35347629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models.
    Kouadri S; Pande CB; Panneerselvam B; Moharir KN; Elbeltagi A
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):21067-21091. PubMed ID: 34748181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.