BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35331871)

  • 1. Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning.
    Hesse LS; Aliasi M; Moser F; ; Haak MC; Xie W; Jenkinson M; Namburete AIL
    Neuroimage; 2022 Jul; 254():119117. PubMed ID: 35331871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast interactive medical image segmentation with weakly supervised deep learning method.
    Girum KB; Créhange G; Hussain R; Lalande A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.
    Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E
    Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants.
    Gontard LC; Pizarro J; Sanz-Peña B; Lubián López SP; Benavente-Fernández I
    Sci Rep; 2021 Jan; 11(1):567. PubMed ID: 33436974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry.
    Krönke M; Eilers C; Dimova D; Köhler M; Buschner G; Schweiger L; Konstantinidou L; Makowski M; Nagarajah J; Navab N; Weber W; Wendler T
    PLoS One; 2022; 17(7):e0268550. PubMed ID: 35905038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions.
    van den Noort F; van der Vaart CH; Grob ATM; van de Waarsenburg MK; Slump CH; van Stralen M
    Ultrasound Obstet Gynecol; 2019 Aug; 54(2):270-275. PubMed ID: 30461079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
    Khalili N; Lessmann N; Turk E; Claessens N; Heus R; Kolk T; Viergever MA; Benders MJNL; Išgum I
    Magn Reson Imaging; 2019 Dec; 64():77-89. PubMed ID: 31181246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images.
    Karimi D; Zeng Q; Mathur P; Avinash A; Mahdavi S; Spadinger I; Abolmaesumi P; Salcudean SE
    Med Image Anal; 2019 Oct; 57():186-196. PubMed ID: 31325722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A technique for semiautomatic segmentation of echogenic structures in 3D ultrasound, applied to infant hip dysplasia.
    Hareendranathan AR; Mabee M; Punithakumar K; Noga M; Jaremko JL
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):31-42. PubMed ID: 26092660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automating Ground Truth Annotations for Gland Segmentation Through Immunohistochemistry.
    Kataria T; Rajamani S; Ayubi AB; Bronner M; Jedrzkiewicz J; Knudsen BS; Elhabian SY
    Mod Pathol; 2023 Dec; 36(12):100331. PubMed ID: 37716506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.