BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35331939)

  • 1. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes.
    Nanda R; Hazan S; Sauer K; Aladin V; Keinan-Adamsky K; Corzilius B; Shahar R; Zaslansky P; Goobes G
    Acta Biomater; 2022 May; 144():195-209. PubMed ID: 35331939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography.
    Lee BEJ; Langelier B; Grandfield K
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100657. PubMed ID: 34296817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystal residual strains and density layers enhance failure resistance in the cleithrum bone of evolutionary advanced pike fish.
    Sauer K; Silveira A; Schoeppler V; Rack A; Zizak I; Pacureanu A; Nassif N; Mantouvalou I; de Nolf W; Fleck C; Shahar R; Zaslansky P
    Acta Biomater; 2024 Apr; 179():164-179. PubMed ID: 38513725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering.
    Nogueira LFB; Maniglia BC; Buchet R; Millán JL; Ciancaglini P; Bottini M; Ramos AP
    J Biomed Mater Res B Appl Biomater; 2022 Apr; 110(4):967-983. PubMed ID: 34793621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mineral-Collagen Interface in Bone.
    Stock SR
    Calcif Tissue Int; 2015 Sep; 97(3):262-80. PubMed ID: 25824581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive properties of cortical bone: mineral-organic interfacial bonding.
    Walsh WR; Guzelsu N
    Biomaterials; 1994 Jan; 15(2):137-45. PubMed ID: 8011860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.
    Fritsch A; Hellmich C
    J Theor Biol; 2007 Feb; 244(4):597-620. PubMed ID: 17074362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106471. PubMed ID: 38458079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure.
    Wang K; Le L; Chun BM; Tiede-Lewis LM; Shiflett LA; Prideaux M; Campos RS; Veno PA; Xie Y; Dusevich V; Bonewald LF; Dallas SL
    J Bone Miner Res; 2019 Jun; 34(6):979-995. PubMed ID: 30882939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteopontin regulates type I collagen fibril formation in bone tissue.
    Depalle B; McGilvery CM; Nobakhti S; Aldegaither N; Shefelbine SJ; Porter AE
    Acta Biomater; 2021 Jan; 120():194-202. PubMed ID: 32344173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging collagen packing dynamics during mineralization of engineered bone tissue.
    Campi G; Fratini M; Bukreeva I; Ciasca G; Burghammer M; Brun F; Tromba G; Mastrogiacomo M; Cedola A
    Acta Biomater; 2015 Sep; 23():309-316. PubMed ID: 26049151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer.
    Sekita A; Matsugaki A; Nakano T
    Bone; 2017 Apr; 97():83-93. PubMed ID: 28069516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative deformation of mineral and collagen in bone at the nanoscale.
    Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure of the bony tissue after experimental trauma to the mandibular region followed by laser therapy.
    Rochkind S; Kogan G; Luger EG; Salame K; Karp E; Graif M; Weiss J
    Photomed Laser Surg; 2004 Jun; 22(3):249-53. PubMed ID: 15315733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2022 May; 129():105139. PubMed ID: 35248874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minerals form a continuum phase in mature cancellous bone.
    Chen PY; Toroian D; Price PA; McKittrick J
    Calcif Tissue Int; 2011 May; 88(5):351-61. PubMed ID: 21274705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils.
    de Alcântara ACS; Felix LC; Galvão DS; Sollero P; Skaf MS
    ACS Biomater Sci Eng; 2023 Jan; 9(1):230-245. PubMed ID: 36484626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.