BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35332143)

  • 1. Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups.
    Liu Y; Wang W; Zeng AP
    Nat Commun; 2022 Mar; 13(1):1595. PubMed ID: 35332143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial synthesis of C3-C5 diols via extending amino acid catabolism.
    Wang J; Li C; Zou Y; Yan Y
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19159-19167. PubMed ID: 32719126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial production of diols as platform chemicals: recent progresses.
    Zeng AP; Sabra W
    Curr Opin Biotechnol; 2011 Dec; 22(6):749-57. PubMed ID: 21646010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New pathways and metabolic engineering strategies for microbial synthesis of diols.
    Cen X; Dong Y; Liu D; Chen Z
    Curr Opin Biotechnol; 2022 Dec; 78():102845. PubMed ID: 36403537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Cell Factories for Diol Production.
    Sabra W; Groeger C; Zeng AP
    Adv Biochem Eng Biotechnol; 2016; 155():165-97. PubMed ID: 26475465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches.
    Vivek N; Hazeena SH; Alphy MP; Kumar V; Magdouli S; Sindhu R; Pandey A; Binod P
    Bioresour Technol; 2021 Feb; 322():124527. PubMed ID: 33340948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of C2-C4 diols from bioresources: Pathways and metabolic intervention strategies.
    Paul Alphy M; Hakkim Hazeena S; Binoop M; Madhavan A; Arun KB; Vivek N; Sindhu R; Kumar Awasthi M; Binod P
    Bioresour Technol; 2022 Feb; 346():126410. PubMed ID: 34838635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of 1,3-diols in Escherichia coli.
    Kataoka N; Vangnai AS; Pongtharangkul T; Yakushi T; Matsushita K
    Bioresour Technol; 2017 Dec; 245(Pt B):1538-1541. PubMed ID: 28550991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pH effects on the distribution of 1,3-propanediol and 2,3-butanediol produced simultaneously by using an isolated indigenous Klebsiella sp. Ana-WS5.
    Yen HW; Li FT; Wong CL; Chang JS
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):425-31. PubMed ID: 23852040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
    Yim H; Haselbeck R; Niu W; Pujol-Baxley C; Burgard A; Boldt J; Khandurina J; Trawick JD; Osterhout RE; Stephen R; Estadilla J; Teisan S; Schreyer HB; Andrae S; Yang TH; Lee SY; Burk MJ; Van Dien S
    Nat Chem Biol; 2011 May; 7(7):445-52. PubMed ID: 21602812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor Engineering for Enhanced Production of Diols by Klebsiella pneumoniae From Co-Substrate.
    Wang M; Zhou Y; Tan T
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28834346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Engineering of
    Liu Y; Cen X; Liu D; Chen Z
    ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial production of short chain diols.
    Jiang Y; Liu W; Zou H; Cheng T; Tian N; Xian M
    Microb Cell Fact; 2014 Dec; 13():165. PubMed ID: 25491899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.
    Andreozzi S; Chakrabarti A; Soh KC; Burgard A; Yang TH; Van Dien S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 May; 35():148-159. PubMed ID: 26855240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli.
    Reshamwala SMS; Deb SS; Lali AM
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1273-1277. PubMed ID: 28547323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.
    Wang J; Jain R; Shen X; Sun X; Cheng M; Liao JC; Yuan Q; Yan Y
    Metab Eng; 2017 Mar; 40():148-156. PubMed ID: 28215518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Evaluation, and Implementation of Synthetic Isopentyldiol Pathways in
    Liu Y; Chen L; Liu P; Yuan Q; Ma C; Wang W; Zhang C; Ma H; Zeng A
    ACS Synth Biol; 2023 Nov; 12(11):3381-3392. PubMed ID: 37870756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol.
    Xiu ZL; Zeng AP
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):917-26. PubMed ID: 18320188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli.
    Hwang HJ; Park JH; Kim JH; Kong MK; Kim JW; Park JW; Cho KM; Lee PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1374-84. PubMed ID: 24449476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.