These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35332172)

  • 1. Surveying soil-borne disease development on wild rocket salad crop by proximal sensing based on high-resolution hyperspectral features.
    Galieni A; Nicastro N; Pentangelo A; Platani C; Cardi T; Pane C
    Sci Rep; 2022 Mar; 12(1):5098. PubMed ID: 35332172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active vs. Passive Thermal Imaging for Helping the Early Detection of Soil-Borne Rot Diseases on Wild Rocket [
    Rippa M; Pasqualini A; Curcio R; Mormile P; Pane C
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Hyperspectral Imaging by High-Related Vegetation Indices to Track the Wide-Spectrum
    Manganiello G; Nicastro N; Caputo M; Zaccardelli M; Cardi T; Pane C
    Front Plant Sci; 2021; 12():630059. PubMed ID: 33763091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR spectroscopy as a tool to detect contamination of rocket (Eruca sativa and Diplotaxis tenuifolia) salad with common groundsel (Senecio vulgaris) leaves.
    Kokalj M; Prikeržnik M; Kreft S
    J Sci Food Agric; 2017 May; 97(7):2238-2244. PubMed ID: 27620169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorting biotic and abiotic stresses on wild rocket by leaf-image hyperspectral data mining with an artificial intelligence model.
    Navarro A; Nicastro N; Costa C; Pentangelo A; Cardarelli M; Ortenzi L; Pallottino F; Cardi T; Pane C
    Plant Methods; 2022 Apr; 18(1):45. PubMed ID: 35366940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species.
    Martínez-Sánchez A; Gil-Izquierdo A; Gil MI; Ferreres F
    J Agric Food Chem; 2008 Apr; 56(7):2330-40. PubMed ID: 18321050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data.
    Spadafora ND; Amaro AL; Pereira MJ; Müller CT; Pintado M; Rogers HJ
    Food Chem; 2016 Nov; 211():114-23. PubMed ID: 27283614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral Reflectance Response of Wild Rocket (
    Pane C; Galieni A; Riefolo C; Nicastro N; Castrignanò A
    Plants (Basel); 2021 Nov; 10(12):. PubMed ID: 34961046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket).
    Bennett RN; Rosa EA; Mellon FA; Kroon PA
    J Agric Food Chem; 2006 May; 54(11):4005-15. PubMed ID: 16719527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content.
    Pasini F; Verardo V; Cerretani L; Caboni MF; D'Antuono LF
    J Sci Food Agric; 2011 Dec; 91(15):2858-64. PubMed ID: 21725983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of a Leaf Spot Disease of Wild Rocket (Diplotaxis tenuifolia) in Florida Caused by Xanthomonas campestris pv. raphani.
    Pernezny K; Raid RN; Jones JB; Dickstein E
    Plant Dis; 2007 Oct; 91(10):1360. PubMed ID: 30780546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia).
    Martínez-Sanchez A; Llorach R; Gil MI; Ferreres F
    J Agric Food Chem; 2007 Feb; 55(4):1356-63. PubMed ID: 17300153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations.
    Bennett RN; Carvalho R; Mellon FA; Eagles J; Rosa EA
    J Agric Food Chem; 2007 Jan; 55(1):67-74. PubMed ID: 17199315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.).
    Taranto F; Francese G; Di Dato F; D'Alessandro A; Greco B; Onofaro Sanajà V; Pentangelo A; Mennella G; Tripodi P
    J Agric Food Chem; 2016 Jul; 64(29):5824-36. PubMed ID: 27357913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides).
    Guijarro-Real C; Prohens J; Rodríguez-Burruezo A; Fita A
    Food Res Int; 2020 Jun; 132():109008. PubMed ID: 32331664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments.
    Jin J; Koroleva OA; Gibson T; Swanston J; Magan J; Zhang Y; Rowland IR; Wagstaff C
    J Agric Food Chem; 2009 Jun; 57(12):5227-34. PubMed ID: 19489541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Report of Sclerotinia Stem Rot and Watery Soft Rot Caused by Sclerotinia sclerotiorum on Sand Rocket (Diplotaxis tenuifolia) in Italy.
    Garibaldi A; Minuto A; Gullino ML
    Plant Dis; 2005 Nov; 89(11):1241. PubMed ID: 30786452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England.
    Weightman RM; Huckle AJ; Roques SE; Ginsburg D; Dyer CJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(9):1425-35. PubMed ID: 22779918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expiration Date of Ready-to-Eat Salads: Effects on Microbial Load and Biochemical Attributes.
    Xylia P; Botsaris G; Skandamis P; Tzortzakis N
    Foods; 2021 Apr; 10(5):. PubMed ID: 33923060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.].
    Liu EH; Zhou GS; Zhou L
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.