These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35332194)

  • 21. Droplet Impinging Behavior on Surfaces with Wettability Contrasts.
    Farshchian B; Pierce J; Beheshti MS; Park S; Kim N
    Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prompting Splash Impact on Superamphiphobic Surfaces by Imposing a Viscous Part.
    Yu F; Lin S; Yang J; Fan Y; Wang D; Chen L; Deng X
    Adv Sci (Weinh); 2020 Feb; 7(4):1902687. PubMed ID: 32099762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure.
    Latka A; Strandburg-Peshkin A; Driscoll MM; Stevens CS; Nagel SR
    Phys Rev Lett; 2012 Aug; 109(5):054501. PubMed ID: 23006177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast interference imaging of air in splashing dynamics.
    Driscoll MM; Nagel SR
    Phys Rev Lett; 2011 Oct; 107(15):154502. PubMed ID: 22107295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A thin-film model for droplet spreading on soft solid substrates.
    Charitatos V; Kumar S
    Soft Matter; 2020 Sep; 16(35):8284-8298. PubMed ID: 32804176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond Tanner's law: crossover between spreading regimes of a viscous droplet on an identical film.
    Cormier SL; McGraw JD; Salez T; Raphaƫl E; Dalnoki-Veress K
    Phys Rev Lett; 2012 Oct; 109(15):154501. PubMed ID: 23102314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Airflows generated by an impacting drop.
    Bischofberger I; Ray B; Morris JF; Lee T; Nagel SR
    Soft Matter; 2016 Mar; 12(12):3013-20. PubMed ID: 26809314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of surface structure and chemistry on water droplet splashing.
    Koch K; Grichnik R
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.
    Song M; Ju J; Luo S; Han Y; Dong Z; Wang Y; Gu Z; Zhang L; Hao R; Jiang L
    Sci Adv; 2017 Mar; 3(3):e1602188. PubMed ID: 28275735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet Impact and Spreading on Inclined Surfaces.
    Srivastava T; Jena SK; Kondaraju S
    Langmuir; 2021 Nov; 37(46):13737-13745. PubMed ID: 34779208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental Study on Droplet Splash and Receding Breakup on a Smooth Surface at Atmospheric Pressure.
    Yang L; Li Z; Yang T; Chi Y; Zhang P
    Langmuir; 2021 Sep; 37(36):10838-10848. PubMed ID: 34469690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet.
    Singh RK; Hodgson PD; Sen N; Das S
    Langmuir; 2021 Mar; 37(10):3038-3048. PubMed ID: 33651946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.
    Chen JN; Zhang Z; Xu RN; Ouyang XL; Jiang PX
    Langmuir; 2016 Sep; 32(36):9135-55. PubMed ID: 27531256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How micropatterns and air pressure affect splashing on surfaces.
    Tsai P; van der Veen RC; van de Raa M; Lohse D
    Langmuir; 2010 Oct; 26(20):16090-5. PubMed ID: 20860398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of splashing phenomena during the impact of molten sub-micron gold droplets on solid surfaces.
    Shen D; Zou G; Liu L; Duley WW; Norman Zhou Y
    Soft Matter; 2016 Jan; 12(1):295-301. PubMed ID: 26456326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet Retention and Shedding on Slippery Substrates.
    Orme BV; McHale G; Ledesma-Aguilar R; Wells GG
    Langmuir; 2019 Jul; 35(28):9146-9151. PubMed ID: 31260319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field makes Leidenfrost droplets take a leap.
    Wildeman S; Sun C
    Soft Matter; 2016 Dec; 12(48):9622-9632. PubMed ID: 27858052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid-Grain Mixing Suppresses Droplet Spreading and Splashing during Impact.
    Zhao SC; de Jong R; van der Meer D
    Phys Rev Lett; 2017 Feb; 118(5):054502. PubMed ID: 28211715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coalescence Dynamics of PEDOT:PSS Droplets Impacting at Offset on Substrates for Inkjet Printing.
    Sarojini Kg K; Dhar P; Varughese S; Das SK
    Langmuir; 2016 Jun; 32(23):5838-51. PubMed ID: 27212397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational and Analytical Investigation of Droplet Impingement and Spreading Dynamics around the Right Circular Cone.
    Sahoo PC; Senapati JR; Rana BK
    Langmuir; 2022 Dec; 38(48):14891-14908. PubMed ID: 36399123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.