These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 35332283)

  • 1. Design of protein-binding proteins from the target structure alone.
    Cao L; Coventry B; Goreshnik I; Huang B; Sheffler W; Park JS; Jude KM; Marković I; Kadam RU; Verschueren KHG; Verstraete K; Walsh STR; Bennett N; Phal A; Yang A; Kozodoy L; DeWitt M; Picton L; Miller L; Strauch EM; DeBouver ND; Pires A; Bera AK; Halabiya S; Hammerson B; Yang W; Bernard S; Stewart L; Wilson IA; Ruohola-Baker H; Schlessinger J; Lee S; Savvides SN; Garcia KC; Baker D
    Nature; 2022 May; 605(7910):551-560. PubMed ID: 35332283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of High Affinity Binders to Convex Protein Target Sites.
    Yang W; Hicks DR; Ghosh A; Schwartze TA; Conventry B; Goreshnik I; Allen A; Halabiya SF; Kim CJ; Hinck CS; Lee DS; Bera AK; Li Z; Wang Y; Schlichthaerle T; Cao L; Huang B; Garrett S; Gerben SR; Rettie S; Heine P; Murray A; Edman N; Carter L; Stewart L; Almo S; Hinck AP; Baker D
    bioRxiv; 2024 May; ():. PubMed ID: 38746206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary motifs as building blocks for the design of protein-binding peptides.
    Swanson S; Sivaraman V; Grigoryan G; Keating AE
    Protein Sci; 2022 Jun; 31(6):e4322. PubMed ID: 35634780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of ligand-binding proteins with high affinity and selectivity.
    Tinberg CE; Khare SD; Dou J; Doyle L; Nelson JW; Schena A; Jankowski W; Kalodimos CG; Johnsson K; Stoddard BL; Baker D
    Nature; 2013 Sep; 501(7466):212-216. PubMed ID: 24005320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.
    Tlatli R; Nozach H; Collet G; Beau F; Vera L; Stura E; Dive V; Cuniasse P
    FEBS J; 2013 Jan; 280(1):139-59. PubMed ID: 23121732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures and disulfide cross-linking of de novo designed therapeutic mini-proteins.
    Silva DA; Stewart L; Lam KH; Jin R; Baker D
    FEBS J; 2018 May; 285(10):1783-1785. PubMed ID: 29389072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2016; 1414():155-71. PubMed ID: 27094290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAGPIE: An interactive tool for visualizing and analyzing protein-ligand interactions.
    Rodriguez DCP; Weber KC; Sundberg B; Glasgow A
    Protein Sci; 2024 Aug; 33(8):e5027. PubMed ID: 38989559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
    Cao L; Goreshnik I; Coventry B; Case JB; Miller L; Kozodoy L; Chen RE; Carter L; Walls AC; Park YJ; Strauch EM; Stewart L; Diamond MS; Veesler D; Baker D
    Science; 2020 Oct; 370(6515):426-431. PubMed ID: 32907861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massively parallel de novo protein design for targeted therapeutics.
    Chevalier A; Silva DA; Rocklin GJ; Hicks DR; Vergara R; Murapa P; Bernard SM; Zhang L; Lam KH; Yao G; Bahl CD; Miyashita SI; Goreshnik I; Fuller JT; Koday MT; Jenkins CM; Colvin T; Carter L; Bohn A; Bryan CM; Fernández-Velasco DA; Stewart L; Dong M; Huang X; Jin R; Wilson IA; Fuller DH; Baker D
    Nature; 2017 Oct; 550(7674):74-79. PubMed ID: 28953867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of protein interactions with learned surface fingerprints.
    Gainza P; Wehrle S; Van Hall-Beauvais A; Marchand A; Scheck A; Harteveld Z; Buckley S; Ni D; Tan S; Sverrisson F; Goverde C; Turelli P; Raclot C; Teslenko A; Pacesa M; Rosset S; Georgeon S; Marsden J; Petruzzella A; Liu K; Xu Z; Chai Y; Han P; Gao GF; Oricchio E; Fierz B; Trono D; Stahlberg H; Bronstein M; Correia BE
    Nature; 2023 May; 617(7959):176-184. PubMed ID: 37100904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo design of modular peptide-binding proteins by superhelical matching.
    Wu K; Bai H; Chang YT; Redler R; McNally KE; Sheffler W; Brunette TJ; Hicks DR; Morgan TE; Stevens TJ; Broerman A; Goreshnik I; DeWitt M; Chow CM; Shen Y; Stewart L; Derivery E; Silva DA; Bhabha G; Ekiert DC; Baker D
    Nature; 2023 Apr; 616(7957):581-589. PubMed ID: 37020023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEPscan: A Broad Spectrum Approach for the Characterization of Protein-Binder Interactions?
    Rebollo A; Fliedel L; Tuffery P
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AutoDesigner, a
    Bos PH; Houang EM; Ranalli F; Leffler AE; Boyles NA; Eyrich VA; Luria Y; Katz D; Tang H; Abel R; Bhat S
    J Chem Inf Model; 2022 Apr; 62(8):1905-1915. PubMed ID: 35417149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin.
    Fleishman SJ; Whitehead TA; Ekiert DC; Dreyfus C; Corn JE; Strauch EM; Wilson IA; Baker D
    Science; 2011 May; 332(6031):816-21. PubMed ID: 21566186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New computational protein design methods for de novo small molecule binding sites.
    Lucas JE; Kortemme T
    PLoS Comput Biol; 2020 Oct; 16(10):e1008178. PubMed ID: 33017412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-molecule binding and sensing with a designed protein family.
    Lee GR; Pellock SJ; Norn C; Tischer D; Dauparas J; Anischenko I; Mercer JAM; Kang A; Bera A; Nguyen H; Goreshnik I; Vafeados D; Roullier N; Han HL; Coventry B; Haddox HK; Liu DR; Yeh AH; Baker D
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of protein-ligand interfaces: potential in therapeutic development.
    Morin A; Meiler J; Mizoue LS
    Trends Biotechnol; 2011 Apr; 29(4):159-66. PubMed ID: 21295366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.