These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-Valent Metal-Oxo Species at the Nodes of Metal-Triazolate Frameworks: The Effects of Ligand Exchange and Two-State Reactivity for C-H Bond Activation. Rosen AS; Notestein JM; Snurr RQ Angew Chem Int Ed Engl; 2020 Oct; 59(44):19494-19502. PubMed ID: 32227416 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Redox Activity of Metal-Organic Frameworks for Enhanced, Selective O Rosen AS; Mian MR; Islamoglu T; Chen H; Farha OK; Notestein JM; Snurr RQ J Am Chem Soc; 2020 Mar; 142(9):4317-4328. PubMed ID: 32031371 [TBL] [Abstract][Full Text] [Related]
5. Influence of the primary and secondary coordination spheres on nitric oxide adsorption and reactivity in cobalt(ii)-triazolate frameworks. Oktawiec J; Jiang HZH; Turkiewicz AB; Long JR Chem Sci; 2021 Nov; 12(43):14590-14598. PubMed ID: 34881011 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Xiao DJ; Bloch ED; Mason JA; Queen WL; Hudson MR; Planas N; Borycz J; Dzubak AL; Verma P; Lee K; Bonino F; Crocellà V; Yano J; Bordiga S; Truhlar DG; Gagliardi L; Brown CM; Long JR Nat Chem; 2014 Jul; 6(7):590-5. PubMed ID: 24950328 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc). Verma P; Vogiatzis KD; Planas N; Borycz J; Xiao DJ; Long JR; Gagliardi L; Truhlar DG J Am Chem Soc; 2015 May; 137(17):5770-81. PubMed ID: 25882096 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation. Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188 [TBL] [Abstract][Full Text] [Related]
9. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
10. DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species? Wang F; Sun W; Xia C; Wang Y J Biol Inorg Chem; 2017 Oct; 22(7):987-998. PubMed ID: 28667369 [TBL] [Abstract][Full Text] [Related]
11. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
13. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species. Chen K; Que L J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057 [TBL] [Abstract][Full Text] [Related]
14. Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal-Organic Framework. Simons MC; Vitillo JG; Babucci M; Hoffman AS; Boubnov A; Beauvais ML; Chen Z; Cramer CJ; Chapman KW; Bare SR; Gates BC; Lu CC; Gagliardi L; Bhan A J Am Chem Soc; 2019 Nov; 141(45):18142-18151. PubMed ID: 31670511 [TBL] [Abstract][Full Text] [Related]
15. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center. Cao Z; Hall MB J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105 [TBL] [Abstract][Full Text] [Related]
16. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations. Yu X; Zhong L; Li S Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299 [TBL] [Abstract][Full Text] [Related]
17. Electronic structure and reactivity of Fe(iv)oxo species in metal-organic frameworks. Saiz F; Bernasconi L Phys Chem Chem Phys; 2019 Feb; 21(9):4965-4974. PubMed ID: 30758369 [TBL] [Abstract][Full Text] [Related]
18. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation. Ansari A; Ansari M; Singha A; Rajaraman G Chemistry; 2017 Jul; 23(42):10110-10125. PubMed ID: 28498623 [TBL] [Abstract][Full Text] [Related]
19. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Oloo WN; Que L Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131 [TBL] [Abstract][Full Text] [Related]
20. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. Yoshizawa K J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]