These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35332784)

  • 21. Transmission Fourier Transform Infrared Spectroscopic Imaging, Mapping, and Synchrotron Scanning Microscopy with Zinc Sulfide Hemispheres on Living Mammalian Cells at Sub-Cellular Resolution.
    Chan KLA; Altharawi A; Fale P; Song CL; Kazarian SG; Cinque G; Untereiner V; Sockalingum GD
    Appl Spectrosc; 2020 May; 74(5):544-552. PubMed ID: 32031010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histopathological diagnosis of colon cancer using micro-FTIR hyperspectral imaging and deep learning.
    Muniz FB; Baffa MFO; Garcia SB; Bachmann L; Felipe JC
    Comput Methods Programs Biomed; 2023 Apr; 231():107388. PubMed ID: 36773592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.
    Zeeshan F; Tabbassum M; Jorgensen L; Medlicott NJ
    Appl Spectrosc; 2018 Feb; 72(2):268-279. PubMed ID: 29022355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of FT-IR spectrophotometry in cancer diagnostics.
    Bunaciu AA; Hoang VD; Aboul-Enein HY
    Crit Rev Anal Chem; 2015; 45(2):156-65. PubMed ID: 25558776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FT-IR microscopic characterization of normal and malignant human colonic tissues.
    Salman A; Argov S; Ramesh J; Goldstein J; Sinelnikov I; Guterman H; Mordechai S
    Cell Mol Biol (Noisy-le-grand); 2001; 47 Online Pub():OL159-66. PubMed ID: 11936863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics.
    Nyarko EB; Puzey KA; Donnelly CW
    J Food Sci; 2014 Jun; 79(6):M1189-96. PubMed ID: 24802119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infrared spectral histopathology for cancer diagnosis: a novel approach for automated pattern recognition of colon adenocarcinoma.
    Nallala J; Diebold MD; Gobinet C; Bouché O; Sockalingum GD; Piot O; Manfait M
    Analyst; 2014 Aug; 139(16):4005-15. PubMed ID: 24932462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-free differentiation of human pituitary adenomas by FT-IR spectroscopic imaging.
    Steiner G; Mackenroth L; Geiger KD; Stelling A; Pinzer T; Uckermann O; Sablinskas V; Schackert G; Koch E; Kirsch M
    Anal Bioanal Chem; 2012 May; 403(3):727-35. PubMed ID: 22476784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular imaging of paper cross sections by FT-IR spectroscopy and principal component analysis.
    Genest S; Salzer R; Steiner G
    Anal Bioanal Chem; 2013 Jun; 405(16):5421-30. PubMed ID: 23624951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free, automated classification of microsatellite status in colorectal cancer by infrared imaging.
    Kallenbach-Thieltges A; Großerueschkamp F; Jütte H; Kuepper C; Reinacher-Schick A; Tannapfel A; Gerwert K
    Sci Rep; 2020 Jun; 10(1):10161. PubMed ID: 32576892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells.
    Roman M; Wrobel TP; Paluszkiewicz C; Kwiatek WM
    J Biophotonics; 2020 May; 13(5):e201960094. PubMed ID: 31999078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier transform infrared spectroscopy combined with deep learning and data enhancement for quick diagnosis of abnormal thyroid function.
    Yue F; Chen C; Yan Z; Chen C; Guo Z; Zhang Z; Chen Z; Zhang F; Lv X
    Photodiagnosis Photodyn Ther; 2020 Dec; 32():101923. PubMed ID: 33321568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy.
    Chen Y; Huang J; Yeap ZQ; Zhang X; Wu S; Ng CH; Yam MF
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():271-282. PubMed ID: 29626818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the Likelihood of Colorectal Cancer with Artificial Intelligence Tools Using Fourier Transform Infrared Signals Obtained from Tumor Samples.
    Villamanca JJ; Hermogino LJ; Ong KD; Paguia B; Abanilla L; Lim A; Angeles LM; Espiritu B; Isais M; Tomas RC; Albano PM
    Appl Spectrosc; 2022 Dec; 76(12):1412-1428. PubMed ID: 35821580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of breast cancer of various clinical stages based on serum FT-IR spectroscopy combined with multiple algorithms.
    Yang B; Chen C; Cheng C; Cheng H; Yan Z; Chen F; Zhu Z; Zhang H; Yue F; Lv X
    Photodiagnosis Photodyn Ther; 2021 Mar; 33():102199. PubMed ID: 33515764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-Attenuated Total Reflection Fourier Transform Infrared (Micro ATR FT-IR) Spectroscopic Imaging with Variable Angles of Incidence.
    Wrobel TP; Vichi A; Baranska M; Kazarian SG
    Appl Spectrosc; 2015 Oct; 69(10):1170-4. PubMed ID: 26449810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.