BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35332903)

  • 1. Ultrahigh mechanical flexibility induced superior piezoelectricity of InSeBr-type 2D Janus materials.
    Shi X; Jiang S; Han X; Wei M; Wang B; Zhao G; Zheng GP; Yin H
    Phys Chem Chem Phys; 2022 Apr; 24(14):8371-8377. PubMed ID: 35332903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New monolayer ternary In-containing sesquichalcogenides BiInSe
    Yin H; Zheng GP; Wang Y; Yao B
    Phys Chem Chem Phys; 2018 Jul; 20(28):19177-19187. PubMed ID: 29978165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Janus 2D titanium nitride halide TiNX
    Shi X; Yin H; Jiang S; Chen W; Zheng GP; Ren F; Wang B; Zhao G; Liu B
    Phys Chem Chem Phys; 2021 Feb; 23(5):3637-3645. PubMed ID: 33524094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large piezoelectric response in ferroelectric/multiferroelectric metal oxyhalide MOX
    Noor-A-Alam M; Nolan M
    Nanoscale; 2022 Aug; 14(32):11676-11683. PubMed ID: 35912821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coexistence of high piezoelectricity and superior optical absorption in Janus Bi
    Cao SH; Zhang T; Geng HY; Chen XR
    Phys Chem Chem Phys; 2024 Jan; 26(5):4629-4642. PubMed ID: 38251770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group-IV(A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity.
    Nandi P; Rawat A; Ahammed R; Jena N; De Sarkar A
    Nanoscale; 2021 Mar; 13(10):5460-5478. PubMed ID: 33687044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coexistence of superior intrinsic piezoelectricity and thermoelectricity in two-dimensional Janus α-TeSSe.
    Chen S; Chen X; Zeng Z; Geng H; Yin H
    Phys Chem Chem Phys; 2021 Dec; 23(47):26955-26966. PubMed ID: 34842246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X
    Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A
    J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32340009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.
    Yin H; Zheng GP; Gao J; Wang Y; Ma Y
    Phys Chem Chem Phys; 2017 Oct; 19(40):27508-27515. PubMed ID: 28975948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferro-piezoelectricity in emerging Janus monolayer BMX
    Bezzerga D; Haidar EA; Stampfl C; Mir A; Sahnoun M
    Nanoscale Adv; 2023 Feb; 5(5):1425-1432. PubMed ID: 36866264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large Vertical Piezoelectricity in a Janus Cr
    Niu H; Liu Y; Shi J; Wang V
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy in colossal piezoelectricity, giant Rashba effect and ultrahigh carrier mobility in Janus structures of quintuple Bi
    Tripathy N; De Sarkar A
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37167999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pentagonal C
    Li X; Zhang F; Li J; Wang Z; Huang Z; Yu J; Zheng K; Chen X
    J Phys Chem Lett; 2023 Mar; 14(10):2692-2701. PubMed ID: 36892273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic room-temperature piezoelectric quantum anomalous hall insulator in Janus monolayer Fe
    Guo SD; Mu WQ; Xiao XB; Liu BG
    Nanoscale; 2021 Aug; 13(30):12956-12965. PubMed ID: 34477779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric XMoGeY
    Li Z; Luo J; Zhou Y; Chen J; Ling H; Zeng J; Yang Y; Dong H
    Phys Chem Chem Phys; 2024 Apr; 26(15):12133-12141. PubMed ID: 38587498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A first-principles study on the electronic, piezoelectric, and optical properties and strain-dependent carrier mobility of Janus TiXY (X ≠ Y, X/Y = Cl, Br, I) monolayers.
    Yang Q; Zhang T; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2022 Dec; 25(1):274-285. PubMed ID: 36475497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.
    Dong L; Lou J; Shenoy VB
    ACS Nano; 2017 Aug; 11(8):8242-8248. PubMed ID: 28700210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
    Blonsky MN; Zhuang HL; Singh AK; Hennig RG
    ACS Nano; 2015 Oct; 9(10):9885-91. PubMed ID: 26312745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers.
    Cui Y; Peng L; Sun L; Li M; Zhang X; Huang Y
    J Phys Condens Matter; 2020 Feb; 32(8):08LT01. PubMed ID: 31675733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Janus GaOClX (X = F, Br, and I) monolayers as predicted using first-principles calculations: a novel class of nanodielectrics with superior energy storage properties.
    Jiang S; Zheng G
    Phys Chem Chem Phys; 2023 Aug; 25(31):20854-20862. PubMed ID: 37522224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.