BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35332909)

  • 1. Amphiphilic silicones to mitigate lens epithelial cell growth on intraocular lenses.
    Marmo AC; Rodriguez Cruz JJ; Pickett JH; Lott LR; Theibert DS; Chandler HL; Grunlan MA
    J Mater Chem B; 2022 Apr; 10(16):3064-3072. PubMed ID: 35332909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration.
    Rufin MA; Barry ME; Adair PA; Hawkins ML; Raymond JE; Grunlan MA
    Acta Biomater; 2016 Sep; 41():247-52. PubMed ID: 27090588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifouling silicones based on surface-modifying additive amphiphiles.
    Rufin MA; Ngo BKD; Barry ME; Page VM; Hawkins ML; Stafslien SJ; Grunlan MA
    Green Mater; 2017 Mar; 5(1):4-13. PubMed ID: 31673356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thromboresistance of Silicones Modified with PEO-Silane Amphiphiles.
    Ngo BKD; Barry ME; Lim KK; Johnson JC; Luna DJ; Pandian NKR; Jain A; Grunlan MA
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2029-2037. PubMed ID: 33455354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thromboresistance of Polyurethanes Modified with PEO-Silane Amphiphiles.
    Ngo BKD; Lim KK; Johnson JC; Jain A; Grunlan MA
    Macromol Biosci; 2020 Dec; 20(12):e2000193. PubMed ID: 32812374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-protein and anti-bacterial behavior of amphiphilic silicones.
    Hawkins ML; Schott SS; Grigoryan B; Rufin MA; Ngo BKD; Vanderwal L; Stafslien SJ; Grunlan MA
    Polym Chem; 2017 Sep; 8(34):5239-5251. PubMed ID: 29104619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length.
    Rufin MA; Gruetzner JA; Hurley MJ; Hawkins ML; Raymond ES; Raymond JE; Grunlan MA
    J Mater Chem B; 2015 Apr; 3(14):2816-2825. PubMed ID: 26339488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone.
    Suriboot J; Marmo AC; Ngo BKD; Nigam A; Ortiz-Acosta D; Tai BL; Grunlan MA
    Soft Matter; 2021 Apr; 17(15):4133-4142. PubMed ID: 33735370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-resistant silicones: incorporation of poly(ethylene oxide) via siloxane tethers.
    Murthy R; Cox CD; Hahn MS; Grunlan MA
    Biomacromolecules; 2007 Oct; 8(10):3244-52. PubMed ID: 17725363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles.
    Hawkins ML; Faÿ F; Réhel K; Linossier I; Grunlan MA
    Biofouling; 2014 Feb; 30(2):247-58. PubMed ID: 24447301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphiphilic silicones to reduce the absorption of small hydrophobic molecules.
    Quiñones-Pérez M; Cieza RJ; Ngo BKD; Grunlan MA; Domenech M
    Acta Biomater; 2021 Feb; 121():339-348. PubMed ID: 33271355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphiphilic silicones for the facile dispersion of carbon nanotubes and formation of soft skin electrodes.
    Marmo AC; Lott LR; Pickett JH; Koller HE; Nitschke BM; Grunlan MA
    ACS Appl Polym Mater; 2023 Jan; 5(1):775-783. PubMed ID: 37033151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel.
    Zouaghi S; Barry ME; Bellayer S; Lyskawa J; André C; Delaplace G; Grunlan MA; Jimenez M
    Biofouling; 2018 Aug; 34(7):769-783. PubMed ID: 30332896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption.
    Murthy R; Shell CE; Grunlan MA
    Biomaterials; 2009 May; 30(13):2433-9. PubMed ID: 19232435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of fibronectin on surface properties of intraocular lenses.
    Schroeder AC; Lingenfelder C; Seitz B; Grabowy U; W Spraul C; Gatzioufas Z; Herrmann M
    Graefes Arch Clin Exp Ophthalmol; 2009 Sep; 247(9):1277-83. PubMed ID: 19578868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Surface quality of flexible silicone intraocular lenses. A scanning electron microscopy study].
    Kohnen T; Magdowski G; Koch DD
    Klin Monbl Augenheilkd; 1995 Oct; 207(4):253-63. PubMed ID: 8587300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material properties of various intraocular lenses in an experimental study.
    Tehrani M; Dick HB; Wolters B; Pakula T; Wolf E
    Ophthalmologica; 2004; 218(1):57-63. PubMed ID: 14688437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of time and temperature-dependent changes of IOL material properties on IOL: Lens capsule interactions.
    Jaitli A; Roy J; Chatila A; Liao J; Tang L
    Exp Eye Res; 2021 Oct; 211():108726. PubMed ID: 34403680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses.
    Abela-Formanek C; Amon M; Schild G; Schauersberger J; Heinze G; Kruger A
    J Cataract Refract Surg; 2002 Jan; 28(1):50-61. PubMed ID: 11777710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicone elastomers for reduced protein adsorption.
    Chen H; Brook MA; Sheardown H
    Biomaterials; 2004 May; 25(12):2273-82. PubMed ID: 14741592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.