BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35332909)

  • 21. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface.
    Huang XD; Yao K; Zhang Z; Zhang Y; Wang Y
    J Cataract Refract Surg; 2010 Feb; 36(2):290-8. PubMed ID: 20152613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface properties of PEO-silicone composites: reducing protein adsorption.
    Chen H; Brook MA; Chen Y; Sheardown H
    J Biomater Sci Polym Ed; 2005; 16(4):531-48. PubMed ID: 15887658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface modification of intraocular lens material by poly(ethylene glycol) methyl ether methacrylate via a plasma technique to influence posterior capsular opacification.
    Li L; Luo L; Xu X; Nan K; Chen H
    J Control Release; 2011 Nov; 152 Suppl 1():e220-1. PubMed ID: 22195868
    [No Abstract]   [Full Text] [Related]  

  • 24. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses.
    Wong SC; Ramkissoon YD; Lopez M; Page K; Parkin IP; Sullivan PM
    Br J Ophthalmol; 2009 Aug; 93(8):1085-8. PubMed ID: 19336426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study.
    Oshika T; Nagata T; Ishii Y
    Br J Ophthalmol; 1998 May; 82(5):549-53. PubMed ID: 9713064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of heparin surface modification in reducing silicone oil adherence to various intraocular lenses.
    Arthur SN; Peng Q; Apple DJ; Escobar-Gomez M; Bianchi R; Pandey SK; Werner L
    J Cataract Refract Surg; 2001 Oct; 27(10):1662-9. PubMed ID: 11687368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Biocompatibility of silicone intraocular lenses].
    Wenzel M; Kammann J; Allmers R
    Klin Monbl Augenheilkd; 1993 Dec; 203(6):408-12. PubMed ID: 8145485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of ionizing radiation on intraocular lenses.
    Ellerin BE; Nisce LZ; Roberts CW; Thornell C; Sabbas A; Wang H; Li PM; Nori D
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):184-208. PubMed ID: 11516869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intraocular lens changes after short- and long-term exposure to intraocular silicone oil. An in vivo study.
    Khawly JA; Lambert RJ; Jaffe GJ
    Ophthalmology; 1998 Jul; 105(7):1227-33. PubMed ID: 9663226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses.
    Thissen H; Gengenbach T; du Toit R; Sweeney DF; Kingshott P; Griesser HJ; Meagher L
    Biomaterials; 2010 Jul; 31(21):5510-9. PubMed ID: 20417965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft intraocular lenses.
    Allarakhia L; Knoll RL; Lindstrom RL
    J Cataract Refract Surg; 1987 Nov; 13(6):607-20. PubMed ID: 3316596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion.
    Park JH; Bae YH
    Biomaterials; 2002 Apr; 23(8):1797-808. PubMed ID: 11950050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silicone-covered forceps for rigid intraocular lens implantation.
    Kohnen T
    J Cataract Refract Surg; 1997; 23(1):32-3. PubMed ID: 9100104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilic modification of intraocular lens via surface initiated reversible addition-fragmentation chain transfer polymerization for reduced posterior capsular opacification.
    Lin Q; Tang J; Han Y; Xu X; Hao X; Chen H
    Colloids Surf B Biointerfaces; 2017 Mar; 151():271-279. PubMed ID: 28027493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lens epithelial cell ongrowth: comparison of 6 types of hydrophilic intraocular lens models.
    Schild G; Schauersberger J; Amon M; Abela-Formanek C; Kruger A
    J Cataract Refract Surg; 2005 Dec; 31(12):2375-8. PubMed ID: 16473234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(ethylene glycol)-or silicone-modified hyaluronan for contact lens wetting agent applications.
    Paterson SM; Liu L; Brook MA; Sheardown H
    J Biomed Mater Res A; 2015 Aug; 103(8):2602-10. PubMed ID: 25504586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties.
    Yao K; Huang XD; Huang XJ; Xu ZK
    J Biomed Mater Res A; 2006 Sep; 78(4):684-92. PubMed ID: 16739174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opacification of hydrophilic MemoryLens U940A intraocular lenses: analysis of 2 explanted lenses.
    Mattová J; Bohácová E; Murgasová Z; Kadlec R; Forgác F; Klobusická E; Durcanský D
    J Cataract Refract Surg; 2004 Sep; 30(9):1934-9. PubMed ID: 15342058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Experience with hydrophilic silicone disc intraocular lenses].
    Hettlich HJ; Kaufmann R; Hunold W; Harmeyer H; Janssen B; Mittermayer C
    Fortschr Ophthalmol; 1991; 88(3):274-8. PubMed ID: 1889778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.