BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 35332962)

  • 21. Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives.
    Hou P; Yin J; Ding M; Huang J; Xu X
    Small; 2017 Dec; 13(45):. PubMed ID: 28977732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities.
    Xiao B; Omenya F; Reed D; Li X
    Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34243170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
    Kum LW; Gogia A; Vallo N; Singh DK; Kumar J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4100-4110. PubMed ID: 35015517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in the Cathode Materials for Lithium Rechargeable Batteries.
    Lee W; Muhammad S; Sergey C; Lee H; Yoon J; Kang YM; Yoon WS
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2578-2605. PubMed ID: 31034134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-Based Modification Materials for Lithium-ion Battery Cathodes: Advances and Perspectives.
    Zhou L; Yang H; Han T; Song Y; Yang G; Li L
    Front Chem; 2022; 10():914930. PubMed ID: 35755257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current computational trends in polyanionic cathode materials for Li and Na batteries.
    Chakraborty S; Banerjee A; Watcharatharapong T; Araujo RB; Ahuja R
    J Phys Condens Matter; 2018 Jul; 30(28):283003. PubMed ID: 29932053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Lab to Application: Challenges and Opportunities in Achieving Fast Charging with Polyanionic Cathodes for Sodium-Ion Batteries.
    Lu X; Li S; Li Y; Wu F; Wu C; Bai Y
    Adv Mater; 2024 Jun; ():e2407359. PubMed ID: 38936413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilizing Li-Rich Layered Cathode Materials Using a LiCoMnO
    Lin HF; Cheng ST; Chen DZ; Wu NY; Jiang ZX; Chang CT
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Distance Between Phosphate-Based Polyanionic Compounds and Their Practical Application For Sodium-Ion Batteries.
    Hao Z; Shi X; Yang Z; Zhou X; Li L; Ma CQ; Chou S
    Adv Mater; 2024 Feb; 36(7):e2305135. PubMed ID: 37590909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.
    Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyanionic Cathode Materials for Practical Na-Ion Batteries toward High Energy Density and Long Cycle Life.
    Xu C; Zhao J; Yang C; Hu YS
    ACS Cent Sci; 2023 Sep; 9(9):1721-1736. PubMed ID: 37780368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifunctional Surface Construction for Long-Term Cycling Stability of Li-Rich Mn-Based Layered Oxide Cathode for Li-Ion Batteries.
    Yan C; Shao Q; Yao Z; Gao M; Zhang C; Chen G; Sun Q; Sun W; Liu Y; Gao M; Pan H
    Small; 2022 Oct; 18(43):e2107910. PubMed ID: 35768284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Nickel and No Cobalt─The Pursuit of Next-Generation Layered Oxide Cathodes.
    Yu L; Liu T; Amine R; Wen J; Lu J; Amine K
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 34981923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries.
    He W; Guo W; Wu H; Lin L; Liu Q; Han X; Xie Q; Liu P; Zheng H; Wang L; Yu X; Peng DL
    Adv Mater; 2021 Dec; 33(50):e2005937. PubMed ID: 33772921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developments in Surface/Interface Engineering of Ni-Rich Layered Cathode Materials.
    Wang X; Ruan X; Du CF; Yu H
    Chem Rec; 2022 Oct; 22(10):e202200119. PubMed ID: 35733083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research Progress in Improving the Cycling Stability of High-Voltage LiNi
    Xu X; Deng S; Wang H; Liu J; Yan H
    Nanomicro Lett; 2017; 9(2):22. PubMed ID: 30460318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unlocking the Potential of Li-Rich Mn-Based Oxides for High-Rate Rechargeable Lithium-Ion Batteries.
    Yang Y; Gao C; Luo T; Song J; Yang T; Wang H; Zhang K; Zuo Y; Xiao W; Jiang Z; Chen T; Xia D
    Adv Mater; 2023 Dec; 35(52):e2307138. PubMed ID: 37689984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From Liquid to Solid-State Batteries: Li-Rich Mn-Based Layered Oxides as Emerging Cathodes with High Energy Density.
    Kong WJ; Zhao CZ; Sun S; Shen L; Huang XY; Xu P; Lu Y; Huang WZ; Huang JQ; Zhang Q
    Adv Mater; 2024 Apr; 36(14):e2310738. PubMed ID: 38054396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.