These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35333048)

  • 41. Large-Area and Transferred High-Quality Three-Dimensional Topological Insulator Bi
    Tu NH; Tanabe Y; Satake Y; Huynh KK; Le PH; Matsushita SY; Tanigaki K
    Nano Lett; 2017 Apr; 17(4):2354-2360. PubMed ID: 28337910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrostatically Tunable Near-Infrared Plasmonic Resonances in Solution-Processed Atomically Thin NbSe
    Zhao M; Li J; Sebek M; Yang L; Liu YJ; Bosman M; Wang Q; Zheng X; Lu J; Teng J
    Adv Mater; 2021 Aug; 33(32):e2101950. PubMed ID: 34176177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photovoltaic and flexible deep ultraviolet wavelength detector based on novel β-Ga
    Tak BR; Yang MM; Lai YH; Chu YH; Alexe M; Singh R
    Sci Rep; 2020 Sep; 10(1):16098. PubMed ID: 32999335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures.
    Hu H; Guo X; Hu D; Sun Z; Yang X; Dai Q
    Adv Sci (Weinh); 2018 Aug; 5(8):1800175. PubMed ID: 30128236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films.
    Murai S; Fujita K; Daido Y; Yasuhara R; Kamakura R; Tanaka K
    Opt Express; 2016 Jan; 24(2):1143-53. PubMed ID: 26832498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene-protected copper and silver plasmonics.
    Kravets VG; Jalil R; Kim YJ; Ansell D; Aznakayeva DE; Thackray B; Britnell L; Belle BD; Withers F; Radko IP; Han Z; Bozhevolnyi SI; Novoselov KS; Geim AK; Grigorenko AN
    Sci Rep; 2014 Jul; 4():5517. PubMed ID: 24980150
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy.
    Ma CH; Jiang J; Shao PW; Peng QX; Huang CW; Wu PC; Lee JT; Lai YH; Tsai DP; Wu JM; Lo SC; Wu WW; Zhou YC; Chiu PW; Chu YH
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30574-30580. PubMed ID: 30118205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flexible, heat-resistant photodetector based on MoS
    Bao Y; Han J; Li H; Huang K
    Nanotechnology; 2021 Jan; 32(2):025206. PubMed ID: 33073771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transferable Ga
    Lu Y; Krishna S; Liao CH; Yang Z; Kumar M; Liu Z; Tang X; Xiao N; Hassine MB; Thoroddsen ST; Li X
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47922-47930. PubMed ID: 36241169
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxide Heteroepitaxy for Flexible Optoelectronics.
    Bitla Y; Chen C; Lee HC; Do TH; Ma CH; Qui LV; Huang CW; Wu WW; Chang L; Chiu PW; Chu YH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32401-32407. PubMed ID: 27933841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene.
    Hong YJ; Lee WH; Wu Y; Ruoff RS; Fukui T
    Nano Lett; 2012 Mar; 12(3):1431-6. PubMed ID: 22324301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2D Bi
    Wang S; Li Y; Ng A; Hu Q; Zhou Q; Li X; Liu H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32842700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene.
    Sun X; Lu Z; Xiang Y; Wang Y; Shi J; Wang GC; Washington MA; Lu TM
    ACS Nano; 2018 Jun; 12(6):6100-6108. PubMed ID: 29746775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inclined Ultrathin Bi
    Hong C; Tao Y; Nie A; Zhang M; Wang N; Li R; Huang J; Huang Y; Ren X; Cheng Y; Liu X
    ACS Nano; 2020 Dec; 14(12):16803-16812. PubMed ID: 33206523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonics in Atomically Thin Crystalline Silver Films.
    Abd El-Fattah ZM; Mkhitaryan V; Brede J; Fernández L; Li C; Guo Q; Ghosh A; Echarri AR; Naveh D; Xia F; Ortega JE; García de Abajo FJ
    ACS Nano; 2019 Jul; 13(7):7771-7779. PubMed ID: 31188552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking.
    Duempelmann L; Casari D; Luu-Dinh A; Gallinet B; Novotny L
    ACS Nano; 2015 Dec; 9(12):12383-91. PubMed ID: 26498131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films.
    Chen C; Wang Z; Wu K; Ye H
    Sci Technol Adv Mater; 2018; 19(1):174-184. PubMed ID: 29511395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film.
    Fedotov VA; Uchino T; Ou JY
    Opt Express; 2012 Apr; 20(9):9545-50. PubMed ID: 22535045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.