These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35333048)

  • 61. Growth, structure, and morphology of van der Waals epitaxy Cr
    Wang X; Zhou H; Bai L; Wang HQ
    Discov Nano; 2023 Feb; 18(1):23. PubMed ID: 36826603
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrathin van der Waals Metalenses.
    Liu CH; Zheng J; Colburn S; Fryett TK; Chen Y; Xu X; Majumdar A
    Nano Lett; 2018 Nov; 18(11):6961-6966. PubMed ID: 30296107
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Magnesium for Dynamic Nanoplasmonics.
    Duan X; Liu N
    Acc Chem Res; 2019 Jul; 52(7):1979-1989. PubMed ID: 31246401
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.
    Ke S; Chen C; Fu N; Zhou H; Ye M; Lin P; Yuan W; Zeng X; Chen L; Huang H
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28406-28411. PubMed ID: 27726330
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Scanning Near-Field Optical Microscopy of Ultrathin Gold Films.
    Yakubovsky DI; Grudinin DV; Ermolaev GA; Vyshnevyy AA; Mironov MS; Novikov SM; Arsenin AV; Volkov VS
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110961
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Van der Waals Bound Organic/2D Insulator Hybrid Structures: Epitaxial Growth of Acene Films on
    Günder D; Watanabe K; Taniguchi T; Witte G
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38757-38767. PubMed ID: 32846485
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer.
    Formica N; Ghosh DS; Carrilero A; Chen TL; Simpson RE; Pruneri V
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3048-53. PubMed ID: 23514424
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanophotonic biosensors harnessing van der Waals materials.
    Oh SH; Altug H; Jin X; Low T; Koester SJ; Ivanov AP; Edel JB; Avouris P; Strano MS
    Nat Commun; 2021 Jun; 12(1):3824. PubMed ID: 34158483
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Viable stretchable plasmonics based on unidirectional nanoprisms.
    Lee JE; Park C; Chung K; Lim JW; Marques Mota F; Jeong U; Kim DH
    Nanoscale; 2018 Feb; 10(8):4105-4112. PubMed ID: 29431795
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry.
    Diest K; Liberman V; Lennon DM; Welander PB; Rothschild M
    Opt Express; 2013 Nov; 21(23):28638-50. PubMed ID: 24514375
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recent Advances in Silver Nanostructured Substrates for Plasmonic Sensors.
    Gahlaut SK; Pathak A; Gupta BD
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140098
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aluminum Plasmonics Enriched Ultraviolet GaN Photodetector with Ultrahigh Responsivity, Detectivity, and Broad Bandwidth.
    Dubey A; Mishra R; Hsieh YH; Cheng CW; Wu BH; Chen LJ; Gwo S; Yen TJ
    Adv Sci (Weinh); 2020 Dec; 7(24):2002274. PubMed ID: 33344129
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tailorable Au Nanoparticles Embedded in Epitaxial TiO
    Misra S; Li L; Jian J; Huang J; Wang X; Zemlyanov D; Jang JW; Ribeiro FH; Wang H
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32895-32902. PubMed ID: 30156098
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Strain-Induced Modulation of Resistive Switching Temperature in Epitaxial VO
    Arata Y; Nishinaka H; Takeda M; Kanegae K; Yoshimoto M
    ACS Omega; 2022 Nov; 7(45):41768-41774. PubMed ID: 36406563
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration.
    Lambert AS; Valiulis SN; Malinick AS; Tanabe I; Cheng Q
    Anal Chem; 2020 Jul; 92(13):8654-8659. PubMed ID: 32525300
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals.
    Kudrynskyi ZR; Bakhtinov AP; Vodopyanov VN; Kovalyuk ZD; Tovarnitskii MV; Lytvyn OS
    Nanotechnology; 2015 Nov; 26(46):465601. PubMed ID: 26511404
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hybrid Metal-Dielectric-Metal Sandwiches for SERS Applications.
    Tatmyshevskiy MK; Yakubovsky DI; Kapitanova OO; Solovey VR; Vyshnevyy AA; Ermolaev GA; Klishin YA; Mironov MS; Voronov AA; Arsenin AV; Volkov VS; Novikov SM
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947554
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.