These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35333521)
1. Latent Variables Capture Pathway-Level Points of Departure in High-Throughput Toxicogenomic Data. Basili D; Reynolds J; Houghton J; Malcomber S; Chambers B; Liddell M; Muller I; White A; Shah I; Everett LJ; Middleton A; Bender A Chem Res Toxicol; 2022 Apr; 35(4):670-683. PubMed ID: 35333521 [TBL] [Abstract][Full Text] [Related]
2. Exploring the effects of experimental parameters and data modeling approaches on in vitro transcriptomic point-of-departure estimates. Harrill JA; Everett LJ; Haggard DE; Bundy JL; Willis CM; Shah I; Friedman KP; Basili D; Middleton A; Judson RS Toxicology; 2024 Jan; 501():153694. PubMed ID: 38043774 [TBL] [Abstract][Full Text] [Related]
3. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627 [TBL] [Abstract][Full Text] [Related]
4. Next generation risk assessment for occupational chemical safety - A real world example with sodium-2-hydroxyethane sulfonate. Wood A; Breffa C; Chaine C; Cubberley R; Dent M; Eichhorn J; Fayyaz S; Grimm FA; Houghton J; Kiwamoto R; Kukic P; Lee M; Malcomber S; Martin S; Nicol B; Reynolds J; Riley G; Scott S; Smith C; Westmoreland C; Wieland W; Williams M; Wolton K; Zellmann T; Gutsell S Toxicology; 2024 Aug; 506():153835. PubMed ID: 38857863 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic points-of-departure from short-term exposure studies are protective of chronic effects for fish exposed to estrogenic chemicals. Pagé-Larivière F; Crump D; O'Brien JM Toxicol Appl Pharmacol; 2019 Sep; 378():114634. PubMed ID: 31226361 [TBL] [Abstract][Full Text] [Related]
6. High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. Franzosa JA; Bonzo JA; Jack J; Baker NC; Kothiya P; Witek RP; Hurban P; Siferd S; Hester S; Shah I; Ferguson SS; Houck KA; Wambaugh JF NPJ Syst Biol Appl; 2021 Jan; 7(1):7. PubMed ID: 33504769 [TBL] [Abstract][Full Text] [Related]
7. From vision toward best practices: Evaluating Reardon AJF; Farmahin R; Williams A; Meier MJ; Addicks GC; Yauk CL; Matteo G; Atlas E; Harrill J; Everett LJ; Shah I; Judson R; Ramaiahgari S; Ferguson SS; Barton-Maclaren TS Front Toxicol; 2023; 5():1194895. PubMed ID: 37288009 [TBL] [Abstract][Full Text] [Related]
8. High-Throughput Transcriptomics Screen of ToxCast Chemicals in U-2 OS Cells. Bundy JL; Everett LJ; Rogers JD; Nyffeler J; Byrd G; Culbreth M; Haggard DE; Word LJ; Chambers BA; Davidson-Fritz S; Harris F; Willis C; Paul-Friedman K; Shah I; Judson R; Harrill JA Toxicol Appl Pharmacol; 2024 Oct; 491():117073. PubMed ID: 39159848 [TBL] [Abstract][Full Text] [Related]
9. Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. Beal MA; Gagne M; Kulkarni SA; Patlewicz G; Thomas RS; Barton-Maclaren TS ALTEX; 2022; 39(1):123-139. PubMed ID: 34818430 [TBL] [Abstract][Full Text] [Related]
10. Next generation risk assessment: an Ebmeyer J; Najjar A; Lange D; Boettcher M; Voß S; Brandmair K; Meinhardt J; Kuehnl J; Hewitt NJ; Krueger CT; Schepky A Front Pharmacol; 2024; 15():1345992. PubMed ID: 38515841 [TBL] [Abstract][Full Text] [Related]
11. Automated quantitative dose-response modeling and point of departure determination for large toxicogenomic and high-throughput screening data sets. Burgoon LD; Zacharewski TR Toxicol Sci; 2008 Aug; 104(2):412-8. PubMed ID: 18441342 [TBL] [Abstract][Full Text] [Related]
12. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Gilmour N; Kern PS; Alépée N; Boislève F; Bury D; Clouet E; Hirota M; Hoffmann S; Kühnl J; Lalko JF; Mewes K; Miyazawa M; Nishida H; Osmani A; Petersohn D; Sekine S; van Vliet E; Klaric M Regul Toxicol Pharmacol; 2020 Oct; 116():104721. PubMed ID: 32645429 [TBL] [Abstract][Full Text] [Related]
13. In vitro transcriptomic analyses reveal pathway perturbations, estrogenic activities, and potencies of data-poor BPA alternative chemicals. Matteo G; Leingartner K; Rowan-Carroll A; Meier M; Williams A; Beal MA; Gagné M; Farmahin R; Wickramasuriya S; Reardon AJF; Barton-Maclaren T; Christopher Corton J; Yauk CL; Atlas E Toxicol Sci; 2023 Feb; 191(2):266-275. PubMed ID: 36534918 [TBL] [Abstract][Full Text] [Related]
14. Biological system considerations for application of toxicogenomics in next-generation risk assessment and predictive toxicology. Black MB; Stern A; Efremenko A; Mallick P; Moreau M; Hartman JK; McMullen PD Toxicol In Vitro; 2022 Apr; 80():105311. PubMed ID: 35038564 [TBL] [Abstract][Full Text] [Related]
16. A workflow to practically apply true dose considerations to in vitro testing for next generation risk assessment. Nicol B; Vandenbossche-Goddard E; Thorpe C; Newman R; Patel H; Yates D Toxicology; 2024 Jun; 505():153826. PubMed ID: 38719068 [TBL] [Abstract][Full Text] [Related]
17. Signature analysis of high-throughput transcriptomics screening data for mechanistic inference and chemical grouping. Harrill JA; Everett LJ; Haggard DE; Word LJ; Bundy JL; Chambers B; Harris F; Willis C; Thomas RS; Shah I; Judson R Toxicol Sci; 2024 Nov; 202(1):103-122. PubMed ID: 39177380 [TBL] [Abstract][Full Text] [Related]
18. COSMOS next generation - A public knowledge base leveraging chemical and biological data to support the regulatory assessment of chemicals. Yang C; Cronin MTD; Arvidson KB; Bienfait B; Enoch SJ; Heldreth B; Hobocienski B; Muldoon-Jacobs K; Lan Y; Madden JC; Magdziarz T; Marusczyk J; Mostrag A; Nelms M; Neagu D; Przybylak K; Rathman JF; Park J; Richarz AN; Richard AM; Ribeiro JV; Sacher O; Schwab C; Vitcheva V; Volarath P; Worth AP Comput Toxicol; 2021 Aug; 19():100175. PubMed ID: 34405124 [TBL] [Abstract][Full Text] [Related]
19. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure. Johnson KJ; Auerbach SS; Costa E Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157 [TBL] [Abstract][Full Text] [Related]
20. MousiPLIER: A Mouse Pathway-Level Information Extractor Model. Zhang S; Heil BJ; Mao W; Chikina M; Greene CS; Heller EA eNeuro; 2024 Jun; 11(6):. PubMed ID: 38789274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]