These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35333521)

  • 21. Qualitative and quantitative concentration-response modelling of gene co-expression networks to unlock hepatotoxic mechanisms for next generation chemical safety assessment.
    Kunnen SJ; Arnesdotter E; Willenbockel CT; Vinken M; van de Water B
    ALTEX; 2024; 41(2):213-232. PubMed ID: 38376873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes.
    Labib S; Williams A; Yauk CL; Nikota JK; Wallin H; Vogel U; Halappanavar S
    Part Fibre Toxicol; 2016 Mar; 13():15. PubMed ID: 26979667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Map and model-moving from observation to prediction in toxicogenomics.
    Schüttler A; Altenburger R; Ammar M; Bader-Blukott M; Jakobs G; Knapp J; Krüger J; Reiche K; Wu GM; Busch W
    Gigascience; 2019 Jun; 8(6):. PubMed ID: 31140561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of Toxicogenomics and Physiologically Based Pharmacokinetic Modeling in Human Health Risk Assessment of Perfluorooctane Sulfonate.
    Chen Q; Chou WC; Lin Z
    Environ Sci Technol; 2022 Mar; 56(6):3623-3633. PubMed ID: 35194992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments.
    Mezencev R; Subramaniam R
    Toxicol Appl Pharmacol; 2019 Oct; 380():114706. PubMed ID: 31400414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating scientific confidence in the concordance of in vitro and in vivo protective points of departure.
    Lu EH; Ford LC; Chen Z; Burnett SD; Rusyn I; Chiu WA
    Regul Toxicol Pharmacol; 2024 Mar; 148():105596. PubMed ID: 38447894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mining toxicogenomic data for dose-responsive pathways: implications in advancing next-generation risk assessment.
    Barutcu AR; Black MB; Nong A
    Front Toxicol; 2023; 5():1272364. PubMed ID: 38046401
    [No Abstract]   [Full Text] [Related]  

  • 29. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment.
    Li Y; Zhang Z; Jiang S; Xu F; Tulum L; Li K; Liu S; Li S; Chang L; Liddell M; Tu F; Gu X; Carmichael PL; White A; Peng S; Zhang Q; Li J; Zuo T; Kukic P; Xu P
    Chemosphere; 2023 Feb; 313():137359. PubMed ID: 36427571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted salmon gene array (SalArray): a toxicogenomic tool for gene expression profiling of interactions between estrogen and aryl hydrocarbon receptor signalling pathways.
    Mortensen AS; Arukwe A
    Chem Res Toxicol; 2007 Mar; 20(3):474-88. PubMed ID: 17291011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Historical Data-Based Informative Prior on Benchmark Dose Estimation of Toxicogenomics.
    Ji C; Shao K
    Chem Res Toxicol; 2023 Aug; 36(8):1345-1354. PubMed ID: 37494567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment.
    Wilson VS; Keshava N; Hester S; Segal D; Chiu W; Thompson CM; Euling SY
    Toxicol Appl Pharmacol; 2013 Sep; 271(3):299-308. PubMed ID: 21295051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Derivation of metabolic point of departure using high-throughput in vitro metabolomics: investigating the importance of sampling time points on benchmark concentration values in the HepaRG cell line.
    Malinowska JM; Palosaari T; Sund J; Carpi D; Weber RJM; Lloyd GR; Whelan M; Viant MR
    Arch Toxicol; 2023 Mar; 97(3):721-735. PubMed ID: 36683062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.
    Dearfield KL; Gollapudi BB; Bemis JC; Benz RD; Douglas GR; Elespuru RK; Johnson GE; Kirkland DJ; LeBaron MJ; Li AP; Marchetti F; Pottenger LH; Rorije E; Tanir JY; Thybaud V; van Benthem J; Yauk CL; Zeiger E; Luijten M
    Environ Mol Mutagen; 2017 Jun; 58(5):264-283. PubMed ID: 27650663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Throughput Read-Across for Screening a Large Inventory of Related Structures by Balancing Artificial Intelligence/Machine Learning and Human Knowledge.
    Yang C; Rathman JF; Mostrag A; Ribeiro JV; Hobocienski B; Magdziarz T; Kulkarni S; Barton-Maclaren T
    Chem Res Toxicol; 2023 Jul; 36(7):1081-1106. PubMed ID: 37399585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Open Access Web Portal for Integrating Mechanistic and Toxicogenomic Study Results.
    Sutherland JJ; Stevens JL; Johnson K; Elango N; Webster YW; Mills BJ; Robertson DH
    Toxicol Sci; 2019 Aug; 170(2):296-309. PubMed ID: 31020328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of fit-for-purpose assays within tiered testing approaches: A case study evaluating prioritized estrogen-active compounds in an in vitro human uterotrophic assay.
    Beames T; Moreau M; Roberts LA; Mansouri K; Haider S; Smeltz M; Nicolas CI; Doheny D; Phillips MB; Yoon M; Becker RA; McMullen PD; Andersen ME; Clewell RA; Hartman JK
    Toxicol Appl Pharmacol; 2020 Jan; 387():114774. PubMed ID: 31783037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A strategy to detect metabolic changes induced by exposure to chemicals from large sets of condition-specific metabolic models computed with enumeration techniques.
    Fresnais L; Perin O; Riu A; Grall R; Ott A; Fromenty B; Gallardo JC; Stingl M; Frainay C; Jourdan F; Poupin N
    BMC Bioinformatics; 2024 Jul; 25(1):234. PubMed ID: 38992584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of computational toxicology models to predict toxicological points of departure: A case study with triazine herbicides.
    Silva M; Kwok RK
    Birth Defects Res; 2023 Mar; 115(5):525-544. PubMed ID: 36584090
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.