BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35333729)

  • 1. Modified Dynamic Movement Primitives: Robot Trajectory Planning and Force Control Under Curved Surface Constraints.
    Han L; Yuan H; Xu W; Huang Y
    IEEE Trans Cybern; 2023 Jul; 53(7):4245-4258. PubMed ID: 35333729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Synchronized Learning of Periodic Compliant Movement Primitives (P-CMPs).
    Petrič T
    Front Neurorobot; 2020; 14():599889. PubMed ID: 33281594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trajectory Deformation-Based Multi-Modal Adaptive Compliance Control for a Wearable Lower Limb Rehabilitation Robot.
    Zhou J; Peng H; Zheng M; Wei Z; Fan T; Song R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():314-324. PubMed ID: 38165796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4551-4561. PubMed ID: 33651696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Compliant Force Control Scheme for Industrial Robot Interactive Operation.
    Xue X; Huang H; Zuo L; Wang N
    Front Neurorobot; 2022; 16():865187. PubMed ID: 35401140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic learning of motion using demonstrations and statistical models for surgical simulation.
    Yang T; Chui CK; Liu J; Huang W; Su Y; Chang SK
    Int J Comput Assist Radiol Surg; 2014 Sep; 9(5):813-23. PubMed ID: 24337811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robot Motion Learning Method Using Broad Learning System Verified by Small-Scale Fish-Like Robot.
    Xu S; Xu T; Li D; Yang C; Huang C; Wu X
    IEEE Trans Cybern; 2023 Sep; 53(9):6053-6065. PubMed ID: 37155383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Enhanced Robot Massage System in Smart Homes Using Force Sensing and a Dynamic Movement Primitive.
    Li C; Fahmy A; Li S; Sienz J
    Front Neurorobot; 2020; 14():30. PubMed ID: 32714174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.
    Ariki Y; Hyon SH; Morimoto J
    Neural Netw; 2013 Apr; 40():32-43. PubMed ID: 23380596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning parametric dynamic movement primitives from multiple demonstrations.
    Matsubara T; Hyon SH; Morimoto J
    Neural Netw; 2011 Jun; 24(5):493-500. PubMed ID: 21388784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safe Robot Trajectory Control Using Probabilistic Movement Primitives and Control Barrier Functions.
    Davoodi M; Iqbal A; Cloud JM; Beksi WJ; Gans NR
    Front Robot AI; 2022; 9():772228. PubMed ID: 35368435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory planning and tracking control of a ground mobile robot:A reconstruction approach towards space vehicle.
    Gu W; Cai S; Hu Y; Zhang H; Chen H
    ISA Trans; 2019 Apr; 87():116-128. PubMed ID: 30503272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework.
    Abu-Dakka FJ; Valera A; Escalera JA; Abderrahim M; Page A; Mata V
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.