BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35333820)

  • 1. Biomechanical accommodation to walking with an ankle-foot prosthesis: An exploratory analysis of novice users with transtibial limb loss within the first year of ambulation.
    Mahon CE; Hendershot BD
    Prosthet Orthot Int; 2022 Oct; 46(5):452-458. PubMed ID: 35333820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of push-off and collision work during step-to-step transition in amputees walking at self-selected speed: Effect of amputation level.
    Sedran L; Bonnet X; Thomas-Pohl M; Loiret I; Martinet N; Pillet H; Paysant J
    J Biomech; 2024 Jan; 163():111943. PubMed ID: 38244403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering the tuning parameter settings of a commercial powered prosthetic foot to increase power during push-off may not reduce collisional work in the intact limb during gait.
    Davidson AM; Childers WL; Chang YH
    Prosthet Orthot Int; 2021 Oct; 45(5):410-416. PubMed ID: 34469940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
    Russell Esposito E; Aldridge Whitehead JM; Wilken JM
    Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation.
    Houdijk H; Wezenberg D; Hak L; Cutti AG
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):76. PubMed ID: 30255807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees.
    De Asha AR; Buckley JG
    Prosthet Orthot Int; 2015 Apr; 39(2):120-5. PubMed ID: 24469428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
    Rábago CA; Aldridge Whitehead J; Wilken JM
    PLoS One; 2016; 11(12):e0166815. PubMed ID: 27977681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.
    Morgenroth DC; Segal AD; Zelik KE; Czerniecki JM; Klute GK; Adamczyk PG; Orendurff MS; Hahn ME; Collins SH; Kuo AD
    Gait Posture; 2011 Oct; 34(4):502-7. PubMed ID: 21803584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study.
    De Pauw K; Cherelle P; Tassignon B; Van Cutsem J; Roelands B; Marulanda FG; Lefeber D; Vanderborght B; Meeusen R
    PLoS One; 2019; 14(4):e0214711. PubMed ID: 30943265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot.
    Heitzmann DWW; Salami F; De Asha AR; Block J; Putz C; Wolf SI; Alimusaj M
    Gait Posture; 2018 Jul; 64():174-180. PubMed ID: 29913354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of four different categories of prosthetic feet during ramp ambulation in unilateral transtibial amputees.
    Agrawal V; Gailey RS; Gaunaurd IA; O'Toole C; Finnieston A; Tolchin R
    Prosthet Orthot Int; 2015 Oct; 39(5):380-9. PubMed ID: 24925671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review.
    Müller R; Tronicke L; Abel R; Lechler K
    PLoS One; 2019; 14(11):e0225032. PubMed ID: 31743353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of prosthetic foot stiffness on foot-ankle biomechanics and relative foot stiffness perception in people with transtibial amputation.
    Halsne EG; Czerniecki JM; Shofer JB; Morgenroth DC
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105141. PubMed ID: 32763624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device.
    Ray SF; Wurdeman SR; Takahashi KZ
    J Neuroeng Rehabil; 2018 Jan; 15(1):6. PubMed ID: 29374491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    J Neuroeng Rehabil; 2013 Oct; 10():107. PubMed ID: 24134803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Walking Energy Efficiency in Transtibial Amputees Through the Integration of a Low-Power Actuator in an ESAR Foot.
    Mazzarini A; Fagioli I; Eken H; Livolsi C; Ciapetti T; Maselli A; Piazzini M; Macchi C; Davalli A; Gruppioni E; Trigili E; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1397-1406. PubMed ID: 38507380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.