These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35333992)

  • 1. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells.
    Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G
    Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor.
    Liang L; Lv H; Shi XL; Liu Z; Chen G; Chen ZG; Sun G
    Mater Horiz; 2021 Oct; 8(10):2750-2760. PubMed ID: 34617552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance.
    Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R
    Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing.
    Lu X; Mo Z; Liu Z; Hu Y; Du C; Liang L; Liu Z; Chen G
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405357. PubMed ID: 38682802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Device with High Thermoelectric Performance and Long-Lasting Usability Based on Gel-Thermocells for Body Heat Harvesting.
    Jia Y; Zhang S; Li J; Han Z; Zhang D; Qu X; Wu Z; Wang H; Chen S
    Small; 2024 Dec; 20(49):e2401427. PubMed ID: 39285822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat.
    Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MXene and Carbon-Based Electrodes of Thermocells for Continuous Thermal Energy Harvest.
    Liu Z; Wei S; Hu Z; Zhu M; Chen G; Huang Y
    Small Methods; 2023 Aug; 7(8):e2300190. PubMed ID: 37096881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells.
    Gao W; Lei Z; Chen W; Chen Y
    ACS Nano; 2022 May; 16(5):8347-8357. PubMed ID: 35452232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
    Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F
    Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments.
    Zhang D; Zhou Y; Mao Y; Li Q; Liu L; Bai P; Ma R
    Nano Lett; 2023 Dec; 23(23):11272-11279. PubMed ID: 38038230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles.
    Guo B; Miura Y; Hoshino Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32184-32192. PubMed ID: 34197066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels.
    Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters.
    Lee CY; Hsu CC; Wang CH; Jeng US; Tung SH; Hu CC; Liu CL
    Small; 2024 Oct; ():e2407622. PubMed ID: 39358979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly robust and sensitive dual-network freeze-resistant organic hydrogel thermocells.
    Zong Y; Chen L; Li X; Ding Q; Han W; Lou J
    Carbohydr Polym; 2023 Aug; 314():120958. PubMed ID: 37173052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors.
    Lu X; Xie D; Zhu K; Wei S; Mo Z; Du C; Liang L; Chen G; Liu Z
    Nanomicro Lett; 2023 Aug; 15(1):196. PubMed ID: 37566154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest.
    Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J
    Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can charged colloidal particles increase the thermoelectric energy conversion efficiency?
    Salez TJ; Huang BT; Rietjens M; Bonetti M; Wiertel-Gasquet C; Roger M; Filomeno CL; Dubois E; Perzynski R; Nakamae S
    Phys Chem Chem Phys; 2017 Apr; 19(14):9409-9416. PubMed ID: 28327718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectrochemical cells based on Li
    Kim K; Lee H
    Phys Chem Chem Phys; 2018 Sep; 20(36):23433-23440. PubMed ID: 30182120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells.
    Xu Y; Li Z; Wu L; Dou H; Zhang X
    Nanomicro Lett; 2024 Jan; 16(1):72. PubMed ID: 38175313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.