These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35334320)
1. Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes. Watrelot AA; Bouska L Food Chem; 2022 Aug; 386():132703. PubMed ID: 35334320 [TBL] [Abstract][Full Text] [Related]
2. Effects of Saignée and Bentonite Treatment on Phenolic Compounds of Marquette Red Wines. Cheng Y; Watrelot AA Molecules; 2022 May; 27(11):. PubMed ID: 35684417 [TBL] [Abstract][Full Text] [Related]
3. Effect of the Application Time of Accentuated Cut Edges (ACE) on Marquette Wine Phenolic Compounds. Cheng Y; Savits JR; Watrelot AA Molecules; 2022 Jan; 27(2):. PubMed ID: 35056854 [TBL] [Abstract][Full Text] [Related]
4. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Ćujić N; Šavikin K; Janković T; Pljevljakušić D; Zdunić G; Ibrić S Food Chem; 2016 Mar; 194():135-42. PubMed ID: 26471536 [TBL] [Abstract][Full Text] [Related]
5. Impact of processing parameters on the phenolic profile of wines produced from hybrid red grapes Maréchal Foch, Corot noir, and Marquette. Manns DC; Coquard Lenerz CT; Mansfield AK J Food Sci; 2013 May; 78(5):C696-702. PubMed ID: 23551038 [TBL] [Abstract][Full Text] [Related]
6. Synergetic effect of Accentuated Cut Edges (ACE) and macerating enzymes on the phenolic composition of Marquette red wines. Cheng Y; Watrelot AA Food Res Int; 2024 Nov; 195():114968. PubMed ID: 39277237 [TBL] [Abstract][Full Text] [Related]
7. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). Jensen JS; Demiray S; Egebo M; Meyer AS J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238 [TBL] [Abstract][Full Text] [Related]
8. Tannin Content in Watrelot AA Molecules; 2021 Aug; 26(16):. PubMed ID: 34443511 [TBL] [Abstract][Full Text] [Related]
9. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. Bindon KA; Kassara S; Cynkar WU; Robinson EM; Scrimgeour N; Smith PA J Agric Food Chem; 2014 May; 62(20):4558-70. PubMed ID: 24773241 [TBL] [Abstract][Full Text] [Related]
10. Salal (Gaultheria shallon) and aronia (Aronia melanocarpa) fruits from Orkney: Phenolic content, composition and effect of wine-making. McDougall GJ; Austin C; Van Schayk E; Martin P Food Chem; 2016 Aug; 205():239-47. PubMed ID: 27006236 [TBL] [Abstract][Full Text] [Related]
11. Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wine-like maceration experiments. Abi-Habib E; Poncet-Legrand C; Roi S; Carrillo S; Doco T; Vernhet A J Sci Food Agric; 2021 Jun; 101(8):3257-3269. PubMed ID: 33222281 [TBL] [Abstract][Full Text] [Related]
12. Effect of flash release treatment on phenolic extraction and wine composition. Morel-Salmi C; Souquet JM; Bes M; Cheynier V J Agric Food Chem; 2006 Jun; 54(12):4270-6. PubMed ID: 16756356 [TBL] [Abstract][Full Text] [Related]
13. Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content. Nogales-Bueno J; Baca-Bocanegra B; Heredia FJ; Hernández-Hierro JM J Food Sci; 2020 Feb; 85(2):324-331. PubMed ID: 31968392 [TBL] [Abstract][Full Text] [Related]
14. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.). Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733 [TBL] [Abstract][Full Text] [Related]
15. Influence of Grape Cell Wall Polysaccharides on the Extraction of Polyphenols during Fermentation in Microvinifications. Hensen JP; Hoening F; Weilack I; Damm S; Weber F J Agric Food Chem; 2022 Jul; 70(29):9117-9131. PubMed ID: 35839340 [TBL] [Abstract][Full Text] [Related]
16. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology. Xu YY; Qiu Y; Ren H; Ju DH; Jia HL Prep Biochem Biotechnol; 2017 Mar; 47(3):312-321. PubMed ID: 27737614 [TBL] [Abstract][Full Text] [Related]
17. Evolution of analysis of polyhenols from grapes, wines, and extracts. Lorrain B; Ky I; Pechamat L; Teissedre PL Molecules; 2013 Jan; 18(1):1076-100. PubMed ID: 23325097 [TBL] [Abstract][Full Text] [Related]
18. Maceration with stems contact fermentation: effect on proanthocyanidins compounds and color in Primitivo red wines. Suriano S; Alba V; Tarricone L; Di Gennaro D Food Chem; 2015 Jun; 177():382-9. PubMed ID: 25660901 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa). Šic Žlabur J; Dobričević N; Pliestić S; Galić A; Bilić DP; Voća S Molecules; 2017 Dec; 22(12):. PubMed ID: 29206179 [TBL] [Abstract][Full Text] [Related]
20. Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components. Kaloudi T; Tsimogiannis D; Oreopoulou V Molecules; 2022 Jul; 27(14):. PubMed ID: 35889248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]