BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35334365)

  • 1. Hierarchically nanostructured Zn
    Ren X; Sun M; Gan Z; Li Z; Cao B; Shen W; Fu Y
    J Colloid Interface Sci; 2022 Jul; 618():88-97. PubMed ID: 35334365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zn-Co Sulfide Microflowers Anchored on Three-Dimensional Graphene: A High-Capacitance and Long-Cycle-Life Electrode for Asymmetric Supercapacitors.
    Deng Q; Tian Z; Wang X; Yang Z; Wu Y
    Chemistry; 2020 Jan; 26(3):650-658. PubMed ID: 31475418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur-deficient flower-like zinc cobalt sulfide microspheres as an advanced electrode material for high-performance supercapacitors.
    Luo J; Zhou X; Dong Y; Jiang N; Zheng Q; Lin D
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):631-641. PubMed ID: 35940147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MnCo
    Fang Q; Sun M; Ren X; Sun Y; Yan Y; Gan Z; Huang J; Cao B; Shen W; Li Z; Fu Y
    J Colloid Interface Sci; 2022 Apr; 611():503-512. PubMed ID: 34971961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH)
    Hou Z; Yu J; Zhou X; Chen Z; Xu J; Zhao B; Gen W; Zhang H
    J Colloid Interface Sci; 2023 Sep; 646():753-762. PubMed ID: 37229993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo
    Li Y; Tang F; Wang R; Wang C; Liu J
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30232-30238. PubMed ID: 27797167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermally Tailored Three-Dimensional Ni-V Layered Double Hydroxide Nanosheets as High-Performance Hybrid Supercapacitor Applications.
    Tyagi A; Joshi MC; Shah A; Thakur VK; Gupta RK
    ACS Omega; 2019 Feb; 4(2):3257-3267. PubMed ID: 31459542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.
    Mahmood A; Zou R; Wang Q; Xia W; Tabassum H; Qiu B; Zhao R
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2148-57. PubMed ID: 26720405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode.
    Wang YY; Hou BH; Ning QL; Pang WL; Rui XH; Liu M; Wu XL
    Nanotechnology; 2019 May; 30(21):214002. PubMed ID: 30865590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed Cu
    Li A; Zhai M; Luan M; Hu J
    Chemistry; 2021 Jul; 27(39):10134-10141. PubMed ID: 33899972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypyrrole-Assisted Ag Doping Strategy to Boost Co(OH)
    Arbi HM; Yadav AA; Anil Kumar Y; Moniruzzaman M; Alzahmi S; Obaidat IM
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor.
    Chen S; Yang G; Zhao X; Wang N; Luo T; Chen X; Wu T; Jiang S; van Aken PA; Qu S; Li T; Du L; Zhang J; Wang H; Wang H
    Front Chem; 2020; 8():663. PubMed ID: 33195003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationally Designed Bimetallic Co-Ni Sulfide Microspheres as High-Performance Battery-Type Electrode for Hybrid Supercapacitors.
    Rajesh JA; Park JY; Manikandan R; Ahn KS
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Co(OH)
    Ulaganathan M; Maharjan MM; Yan Q; Aravindan V; Madhavi S
    Chem Asian J; 2017 Aug; 12(16):2127-2133. PubMed ID: 28594146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell Ni
    Ma L; Kang C; Fu L; Cao S; Zhu H; Liu Q
    J Colloid Interface Sci; 2022 May; 613():244-255. PubMed ID: 35042025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of NiCoZnS materials with controllable morphology for high-performance supercapacitors.
    Tian ZF; Zeng HY; Lv SB; Long YW; Xu S; Li HB; Zou KM
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 34891144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.
    Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Ni
    Shao M; Li J; Li J; Yan Y; Li R
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin and Highly Crumpled/Porous CoP Nanosheet Arrays Anchored on Graphene Boosts the Capacitance and Their Synergistic Effect toward High-Performance Battery-Type Hybrid Supercapacitors.
    Xing H; He W; Liu Y; Long G; Sun Y; Feng J; Feng W; Zhou Y; Zong Y; Li X; Zhu X; Zheng X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26373-26383. PubMed ID: 34043313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.