These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35334400)
1. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. Bona D; Scrinzi D; Tonon G; Ventura M; Nardin T; Zottele F; Andreis D; Andreottola G; Fiori L; Silvestri S J Environ Manage; 2022 Jun; 312():114894. PubMed ID: 35334400 [TBL] [Abstract][Full Text] [Related]
2. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. Scrinzi D; Bona D; Denaro A; Silvestri S; Andreottola G; Fiori L J Environ Manage; 2022 May; 309():114688. PubMed ID: 35180435 [TBL] [Abstract][Full Text] [Related]
3. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. Al-Naqeb G; Sidarovich V; Scrinzi D; Mazzeo I; Robbiati S; Pancher M; Fiori L; Adami V J Environ Manage; 2022 Oct; 320():115910. PubMed ID: 35947910 [TBL] [Abstract][Full Text] [Related]
4. Role of tobacco and bamboo biochar on food waste digestate co-composting: Nitrogen conservation, greenhouse gas emissions, and compost quality. Li D; Manu MK; Varjani S; Wong JWC Waste Manag; 2023 Feb; 156():44-54. PubMed ID: 36436407 [TBL] [Abstract][Full Text] [Related]
5. Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost. Weldon S; Rivier PA; Joner EJ; Coutris C; Budai A Environ Technol; 2023 Dec; 44(28):4261-4271. PubMed ID: 35727051 [TBL] [Abstract][Full Text] [Related]
6. Spent coffee grounds by-products and their influence on soil C-N dynamics. Cervera-Mata A; Delgado G; Fernández-Arteaga A; Fornasier F; Mondini C J Environ Manage; 2022 Jan; 302(Pt B):114075. PubMed ID: 34800772 [TBL] [Abstract][Full Text] [Related]
7. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784 [TBL] [Abstract][Full Text] [Related]
8. [Effect of Application of Sewage Sludge Composts on Greenhouse Gas Emissions in Soil]. Yang YH; Yi JT; Zhang C; Chen H; Mu ZJ Huan Jing Ke Xue; 2017 Apr; 38(4):1647-1653. PubMed ID: 29965170 [TBL] [Abstract][Full Text] [Related]
9. Mitigation of NH Li D; Manu MK; Varjani S; Wong JWC Bioresour Technol; 2022 Sep; 359():127465. PubMed ID: 35700892 [TBL] [Abstract][Full Text] [Related]
10. Food waste digestate composting: Feedstock optimization with sawdust and mature compost. Song B; Manu MK; Li D; Wang C; Varjani S; Ladumor N; Michael L; Xu Y; Wong JWC Bioresour Technol; 2021 Dec; 341():125759. PubMed ID: 34461407 [TBL] [Abstract][Full Text] [Related]
11. Integral approach for the evaluation of poultry manure, compost, and digestate: Amendment characterization, mineralization, and effects on soil and intensive crops. Rizzo PF; Young BJ; Pin Viso N; Carbajal J; Martínez LE; Riera NI; Bres PA; Beily ME; Barbaro L; Farber M; Zubillaga MS; Crespo DC Waste Manag; 2022 Feb; 139():124-135. PubMed ID: 34968898 [TBL] [Abstract][Full Text] [Related]
12. Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Farid IM; Siam HS; Abbas MHH; Mohamed I; Mahmoud SA; Tolba M; Abbas HH; Yang X; Antoniadis V; Rinklebe J; Shaheen SM Chemosphere; 2022 Apr; 292():133389. PubMed ID: 34953878 [TBL] [Abstract][Full Text] [Related]
13. Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm. Fillingham MA; VanderZaag AC; Burtt S; Baldé H; Ngwabie NM; Smith W; Hakami A; Wagner-Riddle C; Bittman S; MacDonald D Waste Manag; 2017 Dec; 70():45-52. PubMed ID: 28931476 [TBL] [Abstract][Full Text] [Related]
14. Benefits to decomposition rates when using digestate as compost co-feedstock: Part I - Focus on physicochemical parameters. Arab G; McCartney D Waste Manag; 2017 Oct; 68():74-84. PubMed ID: 28751175 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen loss, nitrogen functional genes, and humification as affected by hydrochar addition during chicken manure composting. Shan G; Li W; Liu J; Zhu L; Hu X; Yang W; Tan W; Xi B Bioresour Technol; 2023 Feb; 369():128512. PubMed ID: 36538962 [TBL] [Abstract][Full Text] [Related]
16. Lignite effects on NH Bai M; Impraim R; Coates T; Flesch T; Trouvé R; van Grinsven H; Cao Y; Hill J; Chen D J Environ Manage; 2020 Oct; 271():110960. PubMed ID: 32579521 [TBL] [Abstract][Full Text] [Related]
17. Effects of hydrochar derived from hydrothermal treatment of sludge and lignocellulose mixtures on soil properties, nitrogen transformation, and greenhouse gases emissions. Ebrahimi M; Friedl J; Vahidi M; Rowlings DW; Bai Z; Dunn K; O'Hara IM; Zhang Z Chemosphere; 2022 Nov; 307(Pt 2):135792. PubMed ID: 35872065 [TBL] [Abstract][Full Text] [Related]
18. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Agyarko-Mintah E; Cowie A; Singh BP; Joseph S; Van Zwieten L; Cowie A; Harden S; Smillie R Waste Manag; 2017 Mar; 61():138-149. PubMed ID: 27940078 [TBL] [Abstract][Full Text] [Related]
19. Organic Residue Amendments to Modulate Greenhouse Gas Emissions From Agricultural Soils. Brenzinger K; Drost SM; Korthals G; Bodelier PLE Front Microbiol; 2018; 9():3035. PubMed ID: 30581429 [TBL] [Abstract][Full Text] [Related]
20. Greenhouse gas emissions from green waste composting windrow. Zhu-Barker X; Bailey SK; Paw U KT; Burger M; Horwath WR Waste Manag; 2017 Jan; 59():70-79. PubMed ID: 27751682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]