These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35334663)
1. Selective Passivation of Three-Dimensional Carbon Microelectrodes by Polydopamine Electrodeposition and Local Laser Ablation. Rezaei B; Saghir S; Pan JY; Davidsen RS; Keller SS Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334663 [TBL] [Abstract][Full Text] [Related]
2. Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8. Ludvigsen E; Pedersen NR; Zhu X; Marie R; Mackenzie DMA; Emnéus J; Petersen DH; Kristensen A; Keller SS Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34067628 [TBL] [Abstract][Full Text] [Related]
3. 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing. Hemanth S; Halder A; Caviglia C; Chi Q; Keller SS Biosensors (Basel); 2018 Jul; 8(3):. PubMed ID: 30029481 [TBL] [Abstract][Full Text] [Related]
4. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Fouling of Dopamine and Recovery of Carbon Electrodes. Peltola E; Sainio S; Holt KB; Palomäki T; Koskinen J; Laurila T Anal Chem; 2018 Jan; 90(2):1408-1416. PubMed ID: 29218983 [TBL] [Abstract][Full Text] [Related]
6. 3D-Printed Carbon Electrodes for Neurotransmitter Detection. Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021 [TBL] [Abstract][Full Text] [Related]
7. Modified glassy carbon electrode with Polydopamine-multiwalled carbon nanotubes for simultaneous electrochemical determination of biocompounds in biological fluids. Shahbakhsh M; Narouie S; Noroozifar M J Pharm Biomed Anal; 2018 Nov; 161():66-72. PubMed ID: 30145451 [TBL] [Abstract][Full Text] [Related]
8. Effect of Supporting Background Electrolytes on the Nanostructure Morphologies and Electrochemical Behaviors of Electrodeposited Gold Nanoparticles on Glassy Carbon Electrode Surfaces. Zakaria ND; Omar MH; Ahmad Kamal NN; Abdul Razak K; Sönmez T; Balakrishnan V; Hamzah HH ACS Omega; 2021 Sep; 6(38):24419-24431. PubMed ID: 34604624 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of ITO microelectrodes and electrode arrays using a low-cost CO Kappalakandy Valapil K; Filipiak MS; Rekiel W; Jarosińska E; Nogala W; Jönsson-Niedziółka M; Witkowska Nery E Lab Chip; 2023 Aug; 23(17):3802-3810. PubMed ID: 37551427 [TBL] [Abstract][Full Text] [Related]
10. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces. Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of polydopamine decorated carbon cloth as support material to anchor CeO Batool R; Riaz S; Bano S; Hayat A; Nazir MS; Nasir M; Marty JL; Nawaz MH Mikrochim Acta; 2023 Apr; 190(5):172. PubMed ID: 37017829 [TBL] [Abstract][Full Text] [Related]
12. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Lin X; Kang G; Lu L Bioelectrochemistry; 2007 May; 70(2):235-44. PubMed ID: 17079195 [TBL] [Abstract][Full Text] [Related]
13. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling. Thakar R; Weber AE; Morris CA; Baker LA Analyst; 2013 Oct; 138(20):5973-82. PubMed ID: 23942511 [TBL] [Abstract][Full Text] [Related]
15. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. Patel PR; Popov P; Caldwell CM; Welle EJ; Egert D; Pettibone JR; Roossien DH; Becker JB; Berke JD; Chestek CA; Cai D J Neural Eng; 2020 Oct; 17(5):056029. PubMed ID: 33055366 [TBL] [Abstract][Full Text] [Related]
16. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Zhang D; Li L; Ma W; Chen X; Zhang Y Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):241-249. PubMed ID: 27770887 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical impedance study of the polymerization of pyrrole on high surface area carbon electrodes. Moghaddam RB; Pickup PG Phys Chem Chem Phys; 2010 May; 12(18):4733-41. PubMed ID: 20428553 [TBL] [Abstract][Full Text] [Related]
18. Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode. Park S; Park DW; Yang CS; Kim KR; Kwak JH; So HM; Ahn CW; Kim BS; Chang H; Lee JO ACS Nano; 2011 Sep; 5(9):7061-8. PubMed ID: 21838325 [TBL] [Abstract][Full Text] [Related]
19. A highly sensitive and selective electrochemical sensor based on polydopamine functionalized graphene and molecularly imprinted polymer for the 2,4-dichlorophenol recognition and detection. Liu Y; Liang Y; Yang R; Li J; Qu L Talanta; 2019 Apr; 195():691-698. PubMed ID: 30625603 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical and Electrochemical Characterization of Electropolymerized Polydopamine Films: Influence of the Deposition Process. Kund J; Daboss S; D'Alvise TM; Harvey S; Synatschke CV; Weil T; Kranz C Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]