BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35334735)

  • 1. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence.
    Halim ND; Zaini MS; Talib ZA; Liew JYC; Kamarudin MA
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoluminescence Investigation of Carrier Localization in Colloidal PbS and PbS/MnS Quantum Dots.
    Zaini MS; Liew JYC; Alang Ahmad SA; Mohmad AR; Ahmad Kamarudin M
    ACS Omega; 2020 Dec; 5(48):30956-30962. PubMed ID: 33324803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots.
    Jagtap AM; Khatei J; Koteswara Rao KS
    Phys Chem Chem Phys; 2015 Nov; 17(41):27579-87. PubMed ID: 26426345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature photoluminescence properties of CsPbBr
    Ai B; Liu C; Deng Z; Wang J; Han J; Zhao X
    Phys Chem Chem Phys; 2017 Jul; 19(26):17349-17355. PubMed ID: 28650051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors.
    Tang L; Zhang Y; Liao C; Guo Y; Lu Y; Xia Y; Liu Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Exciton Photophysics of PbS Quantum Dots Revealed by Low-Temperature Single Nanocrystal Spectroscopy.
    Hu Z; Kim Y; Krishnamurthy S; Avdeev ID; Nestoklon MO; Singh A; Malko AV; Goupalov SV; Hollingsworth JA; Htoon H
    Nano Lett; 2019 Dec; 19(12):8519-8525. PubMed ID: 31714793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template.
    Parveen S; Paul KK; Das R; Giri PK
    J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octahedral Distortions Generate a Thermally Activated Phonon-Assisted Radiative Recombination Pathway in Cubic CsPbBr
    Cherrette VL; Babbe F; Cooper JK; Zhang JZ
    J Phys Chem Lett; 2023 Oct; 14(39):8717-8725. PubMed ID: 37737107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.
    Kennehan ER; Doucette GS; Marshall AR; Grieco C; Munson KT; Beard MC; Asbury JB
    ACS Nano; 2018 Jun; 12(6):6263-6272. PubMed ID: 29792675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-width dependence of the emission linewidth in ZnO/MgZnO quantum wells.
    Lv XQ; Zhang JY; Ying LY; Liu WJ; Hu XL; Zhang BP; Qiu ZR; Kuboya S; Onabe K
    Nanoscale Res Lett; 2012 Oct; 7(1):605. PubMed ID: 23111026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe
    Çadırcı M; Elibol E; Demirci T; Kurban M
    Luminescence; 2024 Apr; 39(4):e4722. PubMed ID: 38532615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clarifying photoluminescence decay dynamics of self-assembled quantum dots.
    Man MT; Lee HS
    Sci Rep; 2019 Mar; 9(1):4613. PubMed ID: 30874598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots.
    Pfingsten O; Klein J; Protesescu L; Bodnarchuk MI; Kovalenko MV; Bacher G
    Nano Lett; 2018 Jul; 18(7):4440-4446. PubMed ID: 29916252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong quantum confinement effect and reduced Fröhlich exciton-phonon coupling in ZnO quantum dots embedded inside a SiO2 matrix.
    Ning JQ; Zheng CC; Zhang XH; Xu SJ
    Nanoscale; 2015 Nov; 7(41):17482-7. PubMed ID: 26439089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable Luminescence of CsPbBr
    Liu X; Zhang X; Li L; Xu J; Yu S; Gong X; Zhang J; Yin H
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40923-40931. PubMed ID: 31588719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of Phonon-Assisted Auger Recombination and Multiple Exciton Generation in Semiconductor Quantum Dots Revealed by Temperature-Dependent Phonon Dynamics.
    Hyeon-Deuk K; Kobayashi Y; Tamai N
    J Phys Chem Lett; 2014 Jan; 5(1):99-105. PubMed ID: 26276187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally activated photoluminescence in lead selenide colloidal quantum dots.
    Kigel A; Brumer M; Maikov GI; Sashchiuk A; Lifshitz E
    Small; 2009 Jul; 5(14):1675-81. PubMed ID: 19347855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon Coupling with Excitons and Free Carriers in Formamidinium Lead Bromide Perovskite Nanocrystals.
    Ghosh S; Shi Q; Pradhan B; Kumar P; Wang Z; Acharya S; Pal SK; Pullerits T; Karki KJ
    J Phys Chem Lett; 2018 Aug; 9(15):4245-4250. PubMed ID: 29996055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots.
    Zhou P; Zhang X; Liu X; Xu J; Li L
    Opt Express; 2016 Aug; 24(17):19506-16. PubMed ID: 27557228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.