These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35334746)

  • 1. Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding.
    Wang SP; Lee TH; Chen YY; Wang PH
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible dispersion engineering using polymer patterning in nanophotonic waveguides.
    Wang PH; Wang SP; Hou NL; Yang ZR; Huang WH; Lee TH
    Sci Rep; 2023 Aug; 13(1):13211. PubMed ID: 37580361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a polymer-filled silicon nitride strip/slot asymmetric hybrid waveguide for realizing both flat dispersion and athermal operation.
    Bian D; Chen S; Lei X; Qin G; Chen Z
    Appl Opt; 2016 Jun; 55(18):4827-32. PubMed ID: 27409106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved broadband dispersion engineering in coupled silicon nitride waveguides with a partially etched gap.
    Yao Z; Wan Y; Bu R; Zheng Z
    Appl Opt; 2019 Oct; 58(29):8007-8012. PubMed ID: 31674354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon-nitride microring resonators for nonlinear optical and biosensing applications.
    Samudrala SC; Das S; Lee KJ; Abdallah MG; Wenner BR; Allen JW; Allen MS; Magnusson R; Vasilyev M
    Appl Opt; 2021 Sep; 60(25):G132-G138. PubMed ID: 34613202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon nitride/titanium oxide hybrid waveguide design enabling broadband athermal operation.
    Ma J; Sun Y; Chen S
    Appl Opt; 2019 Jul; 58(19):5267-5272. PubMed ID: 31503624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators.
    Kim S; Han K; Wang C; Jaramillo-Villegas JA; Xue X; Bao C; Xuan Y; Leaird DE; Weiner AM; Qi M
    Nat Commun; 2017 Aug; 8(1):372. PubMed ID: 28851874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable coupling regimes of silicon microdisk resonators using MEMS actuators.
    Lee MC; Wu MC
    Opt Express; 2006 May; 14(11):4703-12. PubMed ID: 19516626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation.
    Kordts A; Pfeiffer MH; Guo H; Brasch V; Kippenberg TJ
    Opt Lett; 2016 Feb; 41(3):452-5. PubMed ID: 26907395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides.
    Teng J; Dumon P; Bogaerts W; Zhang H; Jian X; Han X; Zhao M; Morthier G; Baets R
    Opt Express; 2009 Aug; 17(17):14627-33. PubMed ID: 19687941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ultra-High-Q Lithium Niobate Microresonator Integrated with a Silicon Nitride Waveguide in the Vertical Configuration for Evanescent Light Coupling.
    Zhang J; Wu R; Wang M; Liang Y; Zhou J; Wu M; Fang Z; Chu W; Cheng Y
    Micromachines (Basel); 2021 Feb; 12(3):. PubMed ID: 33669092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators.
    Parto K; Azzam SI; Lewis N; Patel SD; Umezawa S; Watanabe K; Taniguchi T; Moody G
    Nano Lett; 2022 Dec; 22(23):9748-9756. PubMed ID: 36318636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triply resonant coherent four-wave mixing in silicon nitride microresonators.
    Fülöp A; Krückel CJ; Castelló-Lurbe D; Silvestre E; Torres-Company V
    Opt Lett; 2015 Sep; 40(17):4006-9. PubMed ID: 26368698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics.
    Ye Z; Fülöp A; Helgason ÓB; Andrekson PA; Torres-Company V
    Opt Lett; 2019 Jul; 44(13):3326-3329. PubMed ID: 31259952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient coupling of crystalline microresonators to integrated photonic waveguides.
    Anderson M; Pavlov NG; Jost JD; Lihachev G; Liu J; Morais T; Zervas M; Gorodetsky ML; Kippenberg TJ
    Opt Lett; 2018 May; 43(9):2106-2109. PubMed ID: 29714757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control.
    Chang JS; Eom SC; Sung GY; Shin JH
    Opt Express; 2009 Dec; 17(25):22918-24. PubMed ID: 20052219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of low-peak-power highly coherent broadband supercontinuum generation through a dispersion-engineered Si-rich silicon nitride waveguide.
    Karim MR; Al Kayed N; Rabiul Hossain M; Rahman BMA
    Appl Opt; 2020 Jul; 59(20):5948-5956. PubMed ID: 32672738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings.
    Jung H; Poot M; Tang HX
    Opt Express; 2015 Nov; 23(24):30634-40. PubMed ID: 26698695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Design for Integrated Photonic Waveguides with Agile Dispersion.
    Wang Z; Du J; Shen W; Liu J; He Z
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-broadband dispersion engineering of nanophotonic waveguides.
    Liang H; He Y; Luo R; Lin Q
    Opt Express; 2016 Dec; 24(26):29444-29451. PubMed ID: 28059330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.