These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35335156)

  • 21. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
    Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L
    J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy.
    Bardin D; Martz TD; Sheeran PS; Shih R; Dayton PA; Lee AP
    Lab Chip; 2011 Dec; 11(23):3990-8. PubMed ID: 22011845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets.
    Gardner K; Uddin MM; Tran L; Pham T; Vanapalli S; Li W
    Lab Chip; 2022 Oct; 22(21):4067-4080. PubMed ID: 36214344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids.
    Kim HH; Cho Y; Baek D; Rho KH; Park SH; Lee S
    Small; 2022 Dec; 18(48):e2205001. PubMed ID: 36310131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vision-Based Performance Analysis of an Active Microfluidic Droplet Generation System Using Droplet Images.
    Mudugamuwa A; Hettiarachchi S; Melroy G; Dodampegama S; Konara M; Roshan U; Amarasinghe R; Jayathilaka D; Wang P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic on-chip production of microgels using combined geometries.
    Shieh H; Saadatmand M; Eskandari M; Bastani D
    Sci Rep; 2021 Jan; 11(1):1565. PubMed ID: 33452407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emulsion templating of poly(lactic acid) particles: droplet formation behavior.
    Vladisavljević GT; Duncanson WJ; Shum HC; Weitz DA
    Langmuir; 2012 Sep; 28(36):12948-54. PubMed ID: 22860633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine Learning-Aided Microdroplets Breakup Characteristic Prediction in Flow-Focusing Microdevices by Incorporating Variations of Cross-Flow Tilt Angles.
    Talebjedi B; Abouei Mehrizi A; Talebjedi B; Mohseni SS; Tasnim N; Hoorfar M
    Langmuir; 2022 Aug; 38(34):10465-10477. PubMed ID: 35973231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system.
    Mottaghi S; Nazari M; Fattahi SM; Nazari M; Babamohammadi S
    Biomed Microdevices; 2020 Sep; 22(3):61. PubMed ID: 32876861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluid mixing in droplet-based microfluidics with T junction and convergent-divergent sinusoidal microchannels.
    Yang L; Li S; Liu J; Cheng J
    Electrophoresis; 2018 Feb; 39(3):512-520. PubMed ID: 29168894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternating Droplet Formation by using Tapered Channel Geometry.
    Saqib M; Şahinoğlu OB; Erdem EY
    Sci Rep; 2018 Jan; 8(1):1606. PubMed ID: 29371646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An asymmetric flow-focusing droplet generator promotes rapid mixing of reagents.
    Belousov KI; Filatov NA; Kukhtevich IV; Kantsler V; Evstrapov AA; Bukatin AS
    Sci Rep; 2021 Apr; 11(1):8797. PubMed ID: 33888801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.