These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35335238)

  • 1. Antibacterial Properties of Non-Modified Wool, Determined and Discussed in Relation to ISO 20645:2004 Standard.
    Ivankovic T; Rajic A; Ercegovic Razic S; Rolland du Roscoat S; Skenderi Z
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customizable bio-based coating of phase-transited lysozyme-COS for durable antibacterial and moisture management on wool fabric.
    Zhang N; Zhu X; Wang Q; Zhou M; Wang P; Yu Y
    Int J Biol Macromol; 2022 Sep; 217():552-561. PubMed ID: 35843400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an eco-friendly antibacterial textile: lysozyme immobilization on wool fabric.
    Yang W; Zhang N; Wang Q; Wang P; Yu Y
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1639-1648. PubMed ID: 32350600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bacterial Life Cycle in Textiles is Governed by Fiber Hydrophobicity.
    Møllebjerg A; Palmén LG; Gori K; Meyer RL
    Microbiol Spectr; 2021 Oct; 9(2):e0118521. PubMed ID: 34643452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface modification on the dynamic heat and mass transfer of wool fabrics.
    Li W; Zhao Y; Wang X
    J Therm Biol; 2019 Oct; 85():102416. PubMed ID: 31657757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections.
    Bischof Vukušić S; Flinčec Grgac S; Budimir A; Kalenić S
    Croat Med J; 2011 Feb; 52(1):68-75. PubMed ID: 21328723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends.
    Navone L; Moffitt K; Hansen KA; Blinco J; Payne A; Speight R
    Waste Manag; 2020 Feb; 102():149-160. PubMed ID: 31678801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging nanomaterials for antibacterial textile fabrication.
    Andra S; Balu SK; Jeevanandam J; Muthalagu M
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Jul; 394(7):1355-1382. PubMed ID: 33710422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eco-friendly acid dyeing of silk and wool fabrics using Acid Violet 49 dye.
    Shabbir MU; Adeel S; Bokhari TH; Usman M; Khosa MK; Ahmad T; Inayat A
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):9808-9819. PubMed ID: 36059013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-silver core-shell particles for antibacterial textile application.
    Nischala K; Rao TN; Hebalkar N
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):203-8. PubMed ID: 20864320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyester but not cotton or wool textiles inhibit hair growth.
    Shafik A
    Dermatology; 1993; 187(4):239-42. PubMed ID: 8274779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Anchored Metal-Organic Framework-Cotton Material for Tunable Antibacterial Copper Delivery.
    Rubin HN; Neufeld BH; Reynolds MM
    ACS Appl Mater Interfaces; 2018 May; 10(17):15189-15199. PubMed ID: 29637764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbiological assessment of efficiency of antibacterial modified textiles].
    Jakimiak B; Röhm-Rodowald E; Staniszewska M; Cieślak M; Malinowska G; Kaleta A
    Rocz Panstw Zakl Hig; 2006; 57(2):177-84. PubMed ID: 17044310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of Salmonella typhimurium on fabrics.
    Wilkoff LJ; Westbrook L; Dixon GJ
    Appl Microbiol; 1969 Aug; 18(2):256-61. PubMed ID: 4896883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Situ Direct Synthesis of HKUST-1 in Wool Fabric for the Improvement of Antibacterial Properties.
    Lis MJ; Caruzi BB; Gil GA; Samulewski RB; Bail A; Scacchetti FAP; Moisés MP; Maestá Bezerra F
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31010112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wool/Acrylic Blended Fabrics as Next-Generation Photodynamic Antimicrobial Materials.
    Chen W; Chen J; Li L; Wang X; Wei Q; Ghiladi RA; Wang Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29557-29568. PubMed ID: 31356046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment.
    Montazer M; Seifollahzadeh S
    Photochem Photobiol; 2011; 87(4):877-83. PubMed ID: 21388383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of durable antibacterial and anti-felting wool fabrics with enhanced comfort via novel N-phenylmaleimide finishing.
    Liu G; Wang W; Yu D
    Bioprocess Biosyst Eng; 2022 May; 45(5):921-929. PubMed ID: 35348877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: microbial resistance of wool fabric treated with bis-Quats compounds.
    Infante MR; Diz M; Manresa A; Pinazo A; Erra P
    J Appl Bacteriol; 1996 Aug; 81(2):212-6. PubMed ID: 8760331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propolis induced antibacterial activity and other technical properties of cotton textiles.
    Sharaf S; Higazy A; Hebeish A
    Int J Biol Macromol; 2013 Aug; 59():408-16. PubMed ID: 23665479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.