These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 35335278)
1. Impact of Modular Architecture on Activity of Glycoside Hydrolase Family 5 Subfamily 8 Mannanases. Møller MS Molecules; 2022 Mar; 27(6):. PubMed ID: 35335278 [TBL] [Abstract][Full Text] [Related]
2. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937 [TBL] [Abstract][Full Text] [Related]
3. Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase. Mizutani K; Fernandes VO; Karita S; Luís AS; Sakka M; Kimura T; Jackson A; Zhang X; Fontes CM; Gilbert HJ; Sakka K Appl Environ Microbiol; 2012 Jul; 78(14):4781-7. PubMed ID: 22562994 [TBL] [Abstract][Full Text] [Related]
5. Functional diversity of three tandem C-terminal carbohydrate-binding modules of a β-mannanase. Møller MS; El Bouaballati S; Henrissat B; Svensson B J Biol Chem; 2021; 296():100638. PubMed ID: 33838183 [TBL] [Abstract][Full Text] [Related]
6. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. Morrill J; Kulcinskaja E; Sulewska AM; Lahtinen S; Stålbrand H; Svensson B; Abou Hachem M BMC Biochem; 2015 Nov; 16():26. PubMed ID: 26558435 [TBL] [Abstract][Full Text] [Related]
8. Production and Functional Characterization of a Novel Mannanase from Alteromonadaceae Bacterium Bs31. Ding R; Xie H; Han Z; Yang J Protein Pept Lett; 2022; 29(8):692-701. PubMed ID: 35708079 [TBL] [Abstract][Full Text] [Related]
9. Functional exploration of the glycoside hydrolase family GH113. Couturier M; Touvrey-Loiodice M; Terrapon N; Drula E; Buon L; Chirat C; Henrissat B; Helbert W PLoS One; 2022; 17(4):e0267509. PubMed ID: 35452491 [TBL] [Abstract][Full Text] [Related]
10. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Do BC; Dang TT; Berrin JG; Haltrich D; To KA; Sigoillot JC; Yamabhai M Microb Cell Fact; 2009 Nov; 8():59. PubMed ID: 19912637 [TBL] [Abstract][Full Text] [Related]
11. Insights into Structure and Reaction Mechanism of β-Mannanases. Sharma K; Dhillon A; Goyal A Curr Protein Pept Sci; 2018; 19(1):34-47. PubMed ID: 27739373 [TBL] [Abstract][Full Text] [Related]
12. Molecular engineering of fungal GH5 and GH26 beta-(1,4)-mannanases toward improvement of enzyme activity. Couturier M; Féliu J; Bozonnet S; Roussel A; Berrin JG PLoS One; 2013; 8(11):e79800. PubMed ID: 24278180 [TBL] [Abstract][Full Text] [Related]
13. New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase. Attia MA; Brumer H Appl Environ Microbiol; 2021 Feb; 87(5):e0263420. PubMed ID: 33355108 [TBL] [Abstract][Full Text] [Related]
14. Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Kulcinskaja E; Rosengren A; Ibrahim R; Kolenová K; Stålbrand H Appl Environ Microbiol; 2013 Jan; 79(1):133-40. PubMed ID: 23064345 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of the novel endo-β-mannanase AtMan5-2 from Arabidopsis thaliana. Wang Y; Azhar S; Gandini R; Divne C; Ezcurra I; Aspeborg H Plant Sci; 2015 Dec; 241():151-63. PubMed ID: 26706067 [TBL] [Abstract][Full Text] [Related]
16. Molecular Cloning, Expression and Biochemical Characterization of a Family 5 Glycoside Hydrolase First Endo-Mannanase (RfGH5_7) from Ruminococcus flavefaciens FD-1 v3. Goyal D; Kumar K; Centeno MSJ; Thakur A; Pires VMR; Bule P; Fontes CMGA; Goyal A Mol Biotechnol; 2019 Nov; 61(11):826-835. PubMed ID: 31435842 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. Zhao Y; Zhang Y; Cao Y; Qi J; Mao L; Xue Y; Gao F; Peng H; Wang X; Gao GF; Ma Y PLoS One; 2011 Jan; 6(1):e14608. PubMed ID: 21436878 [TBL] [Abstract][Full Text] [Related]
18. β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates. Malgas S; van Dyk SJ; Pletschke BI Enzyme Microb Technol; 2015 Mar; 70():1-8. PubMed ID: 25659626 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of exo-β-mannanase activity in the GH2 family. Domingues MN; Souza FHM; Vieira PS; de Morais MAB; Zanphorlin LM; Dos Santos CR; Pirolla RAS; Honorato RV; de Oliveira PSL; Gozzo FC; Murakami MT J Biol Chem; 2018 Aug; 293(35):13636-13649. PubMed ID: 29997257 [TBL] [Abstract][Full Text] [Related]
20. Modular organisation and functional analysis of dissected modular beta-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Sunna A Appl Microbiol Biotechnol; 2010 Mar; 86(1):189-200. PubMed ID: 19787349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]